Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Table S1. GC/MS retent	ion time and fragment ion	s of derivative compounds
of the oxygenated organic	c compounds.	_
Compound	RT (min)	Fragment ions
diC4	4.53	115,55,59
BEN	5.55	105,77,136
diC5	6.32	100,59,129
TOL	7.98	119,91,150
diC6	8.59	114,59,101
MAL	9.18	89,73,175
diC7	11.33	115,74,55
3HGA	11.75	127,89,73
PA	13.06	114,83,69
KPA	13.29	95,109,153
diC8	14.19	129,138,74
PH	14.40	163,77,164
TART	14.88	73,147,234
PNA	15.09	100,58,99
tPH	15.52	163,135,194
iPH	15.97	163,135,194
diC9	17.05	152,74,55
CIT	17.46	215,231,89
MTL1	17.93	219,73,147
diC10	19.81	74,55,125
LEV	22.03	204,217,73
TRIM	24.82	221,222,162
C16	26.88	74,87,143
C17	29.25	74,87,143
C18:1	30.87	55,69,74
C18	31.78	74,87,143
Tetracosane d-50	36.01	66,82,50

Table S2. Retention time and m/z data used for other compounds without available reference standards.							
Compound	RT	<i>m/z</i> used for	Reference				
-		identification					
2-MGA	10.95	73,219,147	(Szmigielski et al. 2007b)				
2-HGA	12.01	127,89,73	(Flores and Doskey 2015), NIST				
MBTCA	15.36	85,155,114	(Shen et al. 2015; Szmigielski et				
			al. 2007a)				
MTL2	17.32	219,73,147	(Claeys et al. 2004)				

Table S3. Diagnostic mass ratios of Ph/diC ₉ and diC ₆ /diC ₉ in comparison with other studies.							
Location	Ph/diC9	diC ₆ /diC ₉	Particle	Time	Reference		
Limassol, Cyprus	1.4	1.2	size PM _{2.5}	July-August 2018	This study		
Agia Marina Xyliatou, Cyprus	0.57	0.67	PM _{2.5}	July-August 2018	This study		
San Pietro, Italy	0.96	0.38	PM _{2.5}	Winter 2013	Pietrogrande et al., 2014		
Jeju Island, South Korea	1.1	1.07	TSP	Summer 2003	Kundu et al., 2010		
Vavihill, Sweden	0.40	0.54	PM_{10}	April 2008 - March 2009	Hyder et al., 2012		
Morogoro, Tanzania	0.71	1.01	PM _{2.5}	Dry season 2011	Mkoma and Kawamura, 2013		
Hong Kong, roadside	6.50	0.90	PM _{2.5}	Summer, winter 2003	Ho et al., 2006		
Wuhan, China		1.89	PM _{2.5}	Winter 2011- 2012	Guo et al., 2015		

Table S4. Correlations between aromatic acids in LIM.								
	LEV	PH	TRIM	tPH	iPH	BEN	TOL	
LEV	1							
PH	.374*	1						
TRIM	.440*	.720*	1					
tPH	.695*	.360	.251	1				
iPH	.082	.580*	.322	.348*	1			
BEN	.363	.947*	.725*	.330	.543*	1		
TOL	.712*	.411*	.341	.719*	.080	.506*	1	
* Correlation is significant at the 0.05 level.								

Table S5. Correlations between aromatic acids in AGM.							
	LEV	PH	TRIM	tPH	iPH	BEN	
LEV	1						
PH	.228	1					
TRIM	.195	.734*	1				
tPH	.700*	.330	.357	1			
iPH	.508*	.347	.296	.841*	1		
BEN	.065	.837*	.559*	.287	.317	1	
* Correlation is significant at the 0.05 level.							

Table S6. Correlations between each individual HA with PSOA, MTLs, ΣdiC4-diC6 and ΣdiC8-diC10, in AGM								
	MAL	2HGA	TAR	CIT	PSOA	MTLs	ΣdiC4-	ΣdiC8-
MAL	1						diC6	aiC10
2HGA	.500*	1						
TAR	.070	.211	1					
CIT	.287	.323	.717*	1				
PSOA	.720*	.525*	.064	.180	1			
MTLs	.010	.178	.767*	.650*	.030	1		
ΣdiC4-diC6	.112	.130	.414	.560	.221	.442	1	
ΣdiC8-diC10	.454	.780*	.353	.408	.527	.160	.179	1
*Correlation is significant at the 0.05 level.								

Table S7. Correl	ations betw	een each ind	ividual HA	with PSOA,	MTLs, ΣdiC	24-diC6 and	ΣdiC8-diC10), in LIM.
	MAL	2HGA	TAR	CIT	PSOA	MTLs	ΣdiC4-	ΣdiC8-
							diC6	diC10
MAL	1							
2HGA	.614*	1						
TAR	.661*	.827*	1					
CIT	.605*	.745*	.695*	1				
PSOA	.342	.531*	.504	.242	1			
MTLs	057	.128	.029	.049	.139	1		
ΣdiC4-diC6	.675*	.667*	.566*	.699*	.446	.210	1	
ΣdiC8-diC10	.553*	.618*	.642*	.782*	003	.088	.611*	1
*Correlation is significant at the 0.05 level.								

References

- Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J., Guyon, P., Meinrat, O.A., Artaxo, P., Maenhaut, W., 2004. Science. Formation of Secondary Organic Aerosols through Photooxidation of Isoprene. Science 303 (5661), 1173–1176. https://doi.org/10.1126/science.1092805
- Flores, R.M., Doskey, P.V., 2015. Evaluation of multistep derivatization methods for identification and quantification of oxygenated species in organic aerosol. J. Chromatogr. A 1418, 1–11. https://doi.org/10.1016/j.chroma.2015.09.041
- Shen, R.Q., Ding, X., He, Q.F., Cong, Z.Y., Yu, Q.Q., Wang, X.M., 2015. Seasonal variation of secondary organic aerosol tracers in Central Tibetan Plateau. Atmos. Chem. Phys. 15 (15), 8781–8793. https://doi.org/10.5194/acp-15-8781-2015
- Szmigielski, R., Surratt, J.D., Gómez-González, Y., van der Veken, P., Kourtchev, I., Vermeylen, R., Blockhuys, F., Jaoui, M., Kleindienst, T.E., Lewandowski, M., Offenberg, J.H., Edney, E.O., Seinfeld, J.H., Maenhaut, W., Claeys, M. (2007a). 3-methyl-1,2,3-butanetricarboxylic acid: An atmospheric tracer for terpene secondary organic aerosol. Geophys. Res. Lett. 34 (24), 2–7. https://doi.org/10.1029/2007GL031338

Szmigielski, R., Surratt, J.D., Vermeylen, R., Szmigielska, K., Kroll, J.H., Ng, N.L., Murphy, S.M., Sorooshian, A., Seinfeld, J.H., Claeys, M. (2007b). Characterization of 2-methylglyceric acid oligomers in secondary organic aerosol formed from the photooxidation of isoprene using trimethylsilylation and gas chromatography/ion trap mass spectrometry. J. Mass Spectrom. 42 (1), 101–116. https://doi.org/10.1002/jms.1146