Electronic Supplementary Information:

Entrapment of uranium-phosphorus nanocrystals inside root cells of *Tamarix* plants from a mine waste site

Lucia Rodriguez-Freire^{a*}, Cherie L. DeVore^b, Eliane El Hayek^c, Debora Berti^d, Abdul-Mehdi S. Ali^e, Juan S. Lezama Pacheco^f, Johanna M. Blake^{c,g}, Michael N. Spilde^e, Adrian J. Brearley^e, Kateryna

Artyushkova^h, and José M. Cerrato^b

*Corresponding email address: <u>lrfreire@njit.edu</u> Telephone: (001) (973) 596-2448 Fax: (001) (973) 596-5790

^aDepartment of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA

^bDepartment of Civil Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, USA

^cDepartment of Chemistry, MSC03 2060, University of New Mexico, Albuquerque, New Mexico 87131, USA

^dOceanography Department, Texas A&M University, College Station, Texas 77845, USA

^eDepartment of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, USA

^fDepartment of Environmental Earth System Science, Stanford University, Stanford, California 94305, USA

^gU.S. Geological Survey, 6700 Edith Blvd. NE Albuquerque, New Mexico 87113, USA

^hDepartment of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, USA

Table of contents

SI. 2 Tables	S 3
Table S1 EXAFS fitting parameters for root section exposed to 100 μ M U	S3
SI.1 Figures	S4
Figure S1 μ XRF studies show that uranium is accumulated in the intersection between the cortex	
and the epidermis in the roots incubated in the <i>in vitro</i> experiment	S4
Figure S2 Microprobe mapping of a salt cedar root incubated with 100 uM U for 24 in an in vitro	
experiment	S4
Figure S3 High-resolution TEM of a root incubated with 100 uM uranium during 24 h shows	
uranium accumulation in the cell walls of the root	S5
Figure S4 EDS mapping a particle encapsulated inside a cell	S5
Figure S5 EDS mapping a particle aggregate inside the cell	S6

SI.1 Table

	U-O1	U-011	U-C1
N	2	6	$1.8{\pm}0.8$
D (Å)	1.78(1)	2.36(2)	2.87(3)
σ^2 (Å ²)	0.0016(1)	0.012(1)	0.004

Table S1. EXAFS fitting parameters for root section exposed to 100 μ M U

N: number of scatterers, D: distance to the scatterer (Å), and σ^2 : Debye-Waller factor for each shell (Å²).

SI.2 Figures

Figure S1 μ XRF studies show that uranium is accumulated in the intersection between the cortex and the epidermis in the roots incubated in the *in vitro* experiment.

Figure S2 Microprobe mapping of a salt cedar root incubated with 100 uM U for 24 in an *in vitro* experiment.

Figure S3 High-resolution TEM of a root incubated with 100 uM uranium during 24 h shows uranium accumulation in the cell walls of the root.

Figure S4 EDS mapping a particle encapsulated inside a cell. (a) The white square indicates the location of the EDS maps and U particles. (b) Overlay of the U, P, and O EDS maps. (c) EDS spectrum from the U-P particle. In the EDS spectrum, the peaks marked in green were used to build the corresponding element maps.

Figure S5 EDS mapping a particle aggregate inside the cell. The maps of elements detected in the EDS spectrum are shown. Note that Cu is from the grid holding the sample and Os are from sample preparation.