Supplementary Information

for

Surface quinone-induced formation of aqueous reactive sulfur species controls pine wood biochar-mediated reductive dechlorination of hexachloroethane by sulfide

Shujun Yin, Chenhui Wei, and Dongqiang Zhu*

School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China

* Corresponding author D. Zhu, phone: +86 (010) 62766405; email: zhud@pku.edu.cn

Manuscript prepared for Environmental Science-Processes & Impacts

This supporting information contains 1 table, 5 figures in 8 pages
Contents:

Supplementary experimental data

Table S1. Fitting parameters for reduction kinetics of hexachloroethane.

Fig. S1. Deconvolution of C1s peak in X-ray photoelectron spectroscopy (XPS) spectra of P-char.

Fig. S2. Mass balance for hexachloroethane reduction by Whole.

Fig. S3. Mass balance for hexachloroethane reduction by Supernatant of P-char.

Fig. S4. UV-vis spectra of synthetic polysulfide.

Fig. S5. EPR spectra of synthetic polysulfide.
Table S1 Fitting parameters for reduction kinetics of hexachloroethane.a

<table>
<thead>
<tr>
<th>Sample</th>
<th>System</th>
<th>k_{obs} (h-1)b</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-char</td>
<td>Whole</td>
<td>$(7.2 \pm 0.3) \times 10^{-3}$</td>
<td>0.993</td>
</tr>
<tr>
<td></td>
<td>Supernatant</td>
<td>$(6.0 \pm 0.5) \times 10^{-3}$</td>
<td>0.939</td>
</tr>
<tr>
<td>MCNT</td>
<td>Whole</td>
<td>$(1.7 \pm 0.1) \times 10^{-2}$</td>
<td>0.970</td>
</tr>
<tr>
<td></td>
<td>Supernatant</td>
<td>$(1.4 \pm 0.5) \times 10^{-3}$</td>
<td>0.972</td>
</tr>
<tr>
<td>graphite</td>
<td>Whole</td>
<td>$(2.6 \pm 0.2) \times 10^{-2}$</td>
<td>0.964</td>
</tr>
<tr>
<td></td>
<td>Residue</td>
<td>$(4.1 \pm 0.8) \times 10^{-3}$</td>
<td>0.879</td>
</tr>
<tr>
<td>Blank</td>
<td></td>
<td>$(1.6 \pm 0.5) \times 10^{-3}$</td>
<td>0.906</td>
</tr>
</tbody>
</table>

a Reaction conditions: 2 μM hexachloroethane, 8 mM Na\textsubscript{2}S, pH 7.50, and room temperature.

b Fitted by pseudo-first-order model.
Fig. S1 Deconvolution of C1s peak in X-ray photoelectron spectroscopy (XPS) spectra of P-char. The peaks with the binding energies of 284.3 eV, 286.5 eV, and 287.5 eV are assigned to the carbon atoms in aromatic rings (C-C/C=C), epoxy/ether (C-O-C), and carbonyl (C=O), respectively.
Fig. S2 Mass balance for hexachloroethane reduction mediated by different carbonaceous materials, plotted as concentration changes of hexachloroethane and tetrachloroethane (product) with time. Error bars represent standard deviations calculated from triplicate samples. (a) P-char. (b) MCNT. (c) Graphite. Reaction conditions: 2 μM nitrobenzene, 8 mM Na₂S, pH 7.50, and room temperature.
Fig. S3 Mass balance for hexachloroethane (initially at 2 μM) reduction by supernatant collected with filtration of suspension of P-char pre-reacted with Na₂S (8 mM) at pH 7.5 for 72 h, plotted as concentration changes of hexachloroethane and tetrachloroethane (product) with time. Error bars represent standard deviations calculated from triplicate samples.
Fig. S4 UV-vis spectra of synthetic polysulfide prepared by mixing S^0 and Na$_2$S (totally in 8 mM) at 1:1 ratio in aqueous solution.
Fig. S5 EPR spectra of synthetic polysulfide prepared by mixing S^0 and Na$_2$S (totally in 8 mM) at 1:1 ratio in DMF, along with the spectra of Na$_2$S only (0:1 ratio).