Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2021

1 Supplementary information

- 2
- 3 Plastic particles in soil: state of the knowledge on sources, occurrence and
- 4 distribution, analytical methods and ecological impacts
- 5
- 6 Elvis D. Okoffo^{1*}, Stacey O'Brien¹, Francisca Ribeiro^{1,2}, Stephen D. Burrows^{1,2}, Tania Toapanta¹,
- 7 Cassandra Rauert¹, Jake W. O'Brien¹, Benjamin J. Tscharke¹, Xianyu Wang¹ and Kevin V.
- 8 Thomas¹
- 9
- 10 $^1\mbox{Queensland}$ Alliance for Environmental Health Sciences (QAEHS), The University of
- 11 Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
- 12^{-2} College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, EX4
- 13 4QD, Stocker Road, Exeter UK.
- 14
- 15 *Corresponding Author
- 16
- 17 E-mail address: e.okoffo@uq.edu.au
- 18
- 19 Tel: +61 401744007
- 20
- 21
- 22

Table S1. Summary of commonly used analytical techniques for the identification and quantification of plastics in soil samples

Technique	Advantages	Limitations	Impacts on plastics
Stereomicroscope/Microscope	Inexpensive; easy to operate and use; can be used to	Size dependent and open to bias; over-	Non-destructive to plastic particles
	provide	estimation or underestimation of	
	morphological information such as size, shape, colour,	plastic particles owing to	
	and counts of plastic particles	misidentification; time consuming	
		procedure; requires laboratory	
		cleanliness in order to prevent false	
		positives and other misinterpretations	
		¹ ; cannot be used to characterize	
		chemical composition of plastic	
		particles without the using FTIR and	
		Raman spectroscopies	
FTIR	Polymer types of plastics could be identified quickly and	Labour-intensive and time consuming;	Non-destructive to plastic particles
	directly by comparing the resulting spectra with those	size dependent (> 20 μm); Organic and	however focusing and pressing in ATR-
	of known plastics; well established, fast and quite	inorganic impurities, and additives in	FTIR can cause destruction to sample
	reliable; particle > 500 μ m can be analysed by ATR-FTIR,	samples can overlap polymer bands;	
	whiles particles down to 20µm can be analysed by	expensive and require experienced	
	microscopy coupled FTIR; FPA-FTIR shows better	personals for operation and data	
	resolution.	processing; samples require pre-	
		treatment prior to analysis ²	
Raman	Increases the accuracy of polymer type identification;	Fluorescence could be interrupted by	Non-destructive to plastic particles
	suitable for small particles between 1 to 20µm and	the presence of colour, additives, and	
	above with better spatial resolution than FTIR;	microbiological, organic or inorganic	
	insensitive to water interference ³	impurities, pigment; labour intensive	
		and time consuming; requires sample	
		pre-treatment prior to analysis	
vis-NIR spectroscopy	Novel and fast technique, avoiding extraction steps,	Only useful for pollution hotspots;	-
	and directly quantifying the sum of plastics in samples	currently works for selected plastics	
		(LDPE, PET, and PVC); there is a need	
		for a training set to predict the content	
		and type of polymers within a soil	
		sample; does not provide	
		morphological and structural	

		information of plastics	
Hyperspectral imaging technology together with chemometrics	Determine and visualize plastics with particle size from 0.5 to 5 mm on soil surface directly without plastics separation from soil	Only capable for imaging and detecting and visualize plastics (PE) on soil surface	Non-destructive to plastic particles
TED-GC-MS	Allows the analysis of plastic particles without any pre- selection/preparation of samples; enables the analysis of high sample masses which assures homogeneity of sample; suitable for complex environmental matrices	Information on dimension, number, size distribution and shape of particles cannot be determined; applicable to few polymer types	Destructive to plastic particles.
TGA-MS	Requires minimal sample preparation effort; generally cheaper than Pyr-GC-MS or TED-GC-MS; direct quantitative analysis of PET without further sample pre- treatment; easy and viable	Unable to provide morphological information including size, shape and colour; soils with high OM contents are likely to interfere with analysis.	Destructive to plastic particles
Pyr-GC-MS	Fast identification of plastics with high certainty; enables quantitative estimation of mass of plastics irrespective of particle size and shape; provides a basis for the uniform reporting of results as compared to the use of conventional FT-IR and Raman; enables simultaneous analysis of polymer types and organic plastic additives	Information about size, shape, colour and numbers of particles are lost; laborious sample pre-treatment and pre-selection/pre extraction might be needed, can be time consuming	Destructive to plastic particle
PLE	Plastics are dissolved with appropriate solvents and either identified or quantified with appropriate analytical technique; not much sample pre- treatment/preparation is needed; practically faster and rapid measure of plastics; reduces processing and labour times needed to pre-treat samples	Depends on the solubility of plastics which makes the technique unsuitable for broad application to analyse all polymer types; does not deliver information on size, number, shape and colour of particles; expensive technique	Destructive to plastic particles
Soil universal model method (SUMM) based on TGA ⁴	Provides a fast pre-screening method for analysis of plastics (PE, PS, PVC and PET) in soils; the technique can determine plastic particle load in soil without any further detection techniques; simplicity, low costs, time efficient and no sample pre-treatment required	Indicators are promising for qualitative and quantitative determination of studied plastics (PS, PET and PVC) except PE in soil samples,	Destructive to plastic particles -
Time-of-flight secondary ion nass spectrometry (ToF-SIMS) 5	Novel method that provides a reference data; applied to identify particle size and abundance of PP,PVC, PET and PA6; suitable for the analysis of inorganic elements	The fragmentation ions of different microplastics in mass spectrometry were different, and which was difficult	-

and organic compounds and can carr	y out rapid mass to distinguish from each other. For
spectrometry scanning and character	ristic organic ion instance PP and PE could not be
imaging; can provide information on	particle sizes and distinguished just based on their
their distribution	observed ions hence it was necessary
	to calculate the relative ion intensity
	from suspected PP areas and compare
	it with those obtained from the PE and
	PP standards; sample pre-treatment
	may be required as analysis is
	susceptible to interference from
	natural organic matter present in the
	soil

- 1. Zhang B, Yang X, Chen L, Chao J, Teng J, Wang Q. Microplastics in soils: A review of possible sources, analytical methods, and ecological impacts. Journal of Chemical Technology & Biotechnology 2020;95(8):2052-68.
- 2. Okoffo ED, O'Brien S, O'Brien JW, Tscharke BJ, Thomas KV. Wastewater treatment plants as a source of plastics in the environment: a review of occurrence, methods for identification, quantification and fate. Environmental Science: Water Research & Technology 2019;5(11):1908-31.
- 3. Wang W, Ge J, Yu X, Li H. Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Science of The Total Environment 2019:134841.
- 4. David J, Weissmannová HD, Steinmetz Z, Kabelíková L, Demyan MS, Šimečková J, et al. Introducing a soil universal model method (SUMM) and its application for qualitative and quantitative determination of poly(ethylene), poly(styrene), poly(vinyl chloride) and poly(ethylene terephthalate) microplastics in a model soil. Chemosphere 2019;225:810-9.
- 5. Du C, Wu J, Gong J, Liang H, Li Z. ToF-SIMS characterization of microplastics in soils. Surface and Interface Analysis 2020;52(5):293-300.