Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2020

Supporting Information for

Enhanced Tetrabromobisphenol A Debromination by Nanoscale Zero Valent Iron

Particles Sulfidated with S⁰ Dissolved in Ethanol

Heli Wang^{a,b}, Yin Zhong^{a,*}, Xifen Zhu^{a,b}, Dan Li^{a,b,d}, Yirong Deng^{a,b,e}, Weilin Huang^c, Ping'an

Peng^a

^a State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources and Utilization, Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

- ^cDepartment of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901 USA
- ^dSchool of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
- ^eGuangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China

*Corresponding author State Key Laboratory of Organic Geochemistry Guangzhou Institute of Geochemistry Chinese Academy of Sciences Wushan, Guangzhou 510640, China Tel.: +86-20-85290142 Fax: +86-20-85290117 E-mail: <u>zhongyin@gig.ac.cn</u>

Summary

Text S1. List of chemicals and reagents.

- Fig. S1. SEM micrographs and for S-nZVI^S at different S/Fe molar ratios. (A) nZVI, (B) S/Fe = 0.025, (C) S/Fe = 0.25.
- Fig. S2. The EDS spectra of nZVI and S-nZVI^S at different S/Fe molar ratios. (A) nZVI, (B) S/Fe = 0.015; (C) S/Fe = 0.025; (D) S/Fe = 0.05; (E) S/Fe = 0.1; (F) S/Fe = 0.25.
- Fig. S3. TEM images of fresh nZVI (A) and S-nZVI^S at S/Fe of 0.25 (B).
- Fig. S4. Detailed XPS survey of the region for S 2p for S-nZVI^S at different S/Fe molar ratios. (A) nZVI; (B) S/Fe = 0.015; (C) S/Fe = 0.025; (D) S/Fe = 0.05; (E) S/Fe = 0.1; (F) S/Fe = 0.25.
- Fig. S5. Detailed XPS survey of the region for Fe $2p_{3/2}$ for S-nZVI^S at different S/Fe molar ratios. (A) nZVI; (B) S/Fe = 0.015; (C) S/Fe = 0.025; (D) S/Fe = 0.05; (E) S/Fe = 0.1; (F) S/Fe = 0.25.
- Fig. S6. Hydrodynamic diameter (A), zeta potential (B) and N₂-BET specific surface area (C) of the S-nZVI^S with different extents of sulfidation.
- Fig. S7. H₂ evolution for S-nZVI^S with different S/Fe molar ratios and fit to different models. The initial concentration of S-nZVI^S was 2.3 g L⁻¹. (A) Model 1. First-order passivation of Fe(0). (B) Model 2. Replacement of reactive phases. (C) Model 3. Advanced phase replacement model. (D) Model 4. Independent changes in two reactive phases.
- **Fig S8.** Change in the pH value of reaction solution during the reaction of S-nZVI^{S-0.025} with TBBPA. The initial concentration of S-nZVI^S and TBBPA are 2.3 g L⁻¹ and 20 mg L⁻¹, respectively.

- Fig. S9. Effect of S/Fe molar ratio on the transformation of TBBPA by S-nZVI^S. Lines are pseudo-first order fittings of data points. The initial concentration of S-nZVI^S and TBBPA were 2.3 g L⁻¹ and 20 mg L⁻¹, respectively.
- **Fig. S10.** Proposed debromination pathways of TBBPA by nZVI and S-nZVI^S with different S/Fe molar ratios.
- Fig. S11. Transformation kinetics of TBBPA by S-nZVI^{Na₂S} and S-nZVI^{Na₂S₂O₄. The solid lines represent the simulated curves based on the pseudo-first-order reaction kinetic model. The initial concentration of S-nZVI particles and TBBPA are 2.3 g L⁻¹ and 20 mg L⁻¹, respectively.}
- Fig. S12. Detailed XPS survey of the region for Fe 2p3/2 (A, B) and S 2p (C, D) from SnZVI^{Na₂S₂O₄-0.5 (A, C) and S-nZVI^{Na₂S-0.025} (B, D).}
- Fig. S13. Transformation kinetics of TBBPA by S-nZVI^{S-0.025}(S-) under different real waters. The solid lines represent the simulated curves based on the pseudo-first-order reaction kinetic model. The initial concentration of S-nZVI^{S-0.025} particles and TBBPA are 2.3 g L⁻¹ and 5 mg L⁻¹, respectively.
- **Table S1.** Binding energy and relative peak area of XPS peaks of $Fe(2p_{3/2})$ and $S(2p_{3/2})$ elementson the surface of nZVI and S-nZVI^S samples
- Table S2. Theoretical and actual S/Fe and relative atomic percentage of Fe, S, O, and C of S

 nZVI^S at different S/Fe molar ratios.
- **Table S3.** Summary of parameters obtained from fitting HER data with the First-order passivation of Fe^0 model with *k* as global.
- Table S4. Summary of parameters obtained from fitting HER data to the Replacement of reactive phases model.

- **Table S5.** Summary of parameters obtained from fitting HER data to the Advanced phase replacement model.
- **Table S6.** Summary of parameters obtained from fitting HER data to the Independent changes in two reactive phases.
- Table S7. Parameters of Tafel Curves for nZVI and S-nZVI^S.
- Table S8. Parameters of cyclic voltammetry curves for nZVI and S-nZVI^S.
- **Table S9.** Pseudo first-order rate constants (k_{obs}) for TBBPA removal by S-nZVI^S.
- Table S10. Physicochemical properties of water samples.

Text S1. List of chemicals and reagents.

TBBPA standard (97%), bisphenol A (BPA) standard (99%) were purchased from Alfa Aesar (Ward Hill, USA). The standards of debromination products (i.e., tri-BBPA, di-BBPA, mono-BBPA) are synthesized in Dr. Zhiqiang Yu's of Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. Ferrous chloride tetrahydrate (FeCl₂·4H₂O, 99.5%-101.0%), sublimed sulfur (S, 99.5%) and concentrated HCl (guaranteed reagent, 37%, w/w) were obtained from Guangzhou Chemical Reagents Factory (Guangzhou, China). Sodium borohydride (NaBH₄, 98%) were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). Ethanol (AR, 99.7%) was supplied by Shanghai Titan Scientific Co.,Ltd. HPLC-grade methanol was obtained from Merck (Darmstadt, Germany). Ultra high purity compressed nitrogen gas was purchased from Foshan MS Messer Gas Co.,Ltd (Guangzhou, China). The ultrapure water (resistivity: 18.2 M Ω cm) was deoxygenated with high purity nitrogen (99.999%) for 40 min and was then taken into anaerobic chamber to prepare aqueous solutions.

Fig. S1. SEM micrographs and for S-nZVI^s at different S/Fe molar ratios. (A) nZVI, (B) S/Fe = 0.025, (C) S/Fe = 0.25.

Fig. S2. The EDS spectra of nZVI and S-nZVI^S at different S/Fe molar ratios. (A) nZVI, (B) S/Fe = 0.015; (C) S/Fe = 0.025; (D) S/Fe = 0.05; (E) S/Fe = 0.1; (F) S/Fe = 0.25.

Fig. S3.TEM images of freshly prepared nZVI (A) and S-nZVI^S at S/Fe of 0.25 (B).

Fig. S4. Detailed XPS survey of the region for S 2p for S-nZVI^S at different S/Fe molar ratios. (A) nZVI; (B) S/Fe = 0.015; (C) S/Fe = 0.025; (D) S/Fe = 0.05; (E) S/Fe = 0.1; (F) S/Fe = 0.25.

Fig. S5. Detailed XPS survey of the region for Fe $2p_{3/2}$ for S-nZVI^S at different S/Fe molar ratios. (A) nZVI; (B) S/Fe = 0.015; (C) S/Fe = 0.025; (D) S/Fe = 0.05; (E) S/Fe = 0.1; (F) S/Fe = 0.25.

Fig. S6. Hydrodynamic diameter (A), zeta potential (B) and N₂-BET specific surface area (C) of the S-nZVI^S with different extents of sulfidation.

Fig S7. H₂ evolution for S-nZVIS with different S/Fe molar ratios and fit to different models. The initial concentration of S-nZVIS was 2.3 g L⁻¹. (A) First-order passivation of Fe(0) model; (B) Replacement of reactive phases model; (C) Advanced phase replacement model; (D) Independent changes in two reactive phases model.

Fig. S8. Change in the pH value of reaction solution during the reaction of S-nZVI^{S-0.025} with TBBPA. The initial concentration of S-nZVI^S and TBBPA are 2.3 g L⁻¹ and 20 mg L⁻¹, respectively.

Fig S9. Effect of S/Fe molar ratio on the transformation of TBBPA by S-nZVI^S. Lines are pseudo-first order fittings of data points. The initial concentration of S-nZVI^S and TBBPA were 2.3 g L⁻¹ and 20 mg L⁻¹, respectively.

Fig. S10. Proposed debromination pathways of TBBPA by nZVI and S-nZVI^S with different S/Fe molar ratios.

BPA

Mono-BBPA

Fig. S11. Transformation kinetics of TBBPA by S-nZVI^{Na₂S} and S-nZVI^{Na₂S₂O₄. The solid lines represent the simulated curves based on the pseudo-first-order reaction kinetic model. The initial concentration of S-nZVI particles and TBBPA are 2.3 g L⁻¹ and 20 mg L⁻¹, respectively.}

Fig. S12. Detailed XPS survey of the region for Fe 2p3/2 (A, B) and S 2p (C, D) from S- $nZVI^{Na_2S_2O_4-0.5}$ (A, C) and S- $nZVI^{Na_2S-0.025}$ (B, D).

Fig. S13.Transformation kinetics of TBBPA by S-nZVI^{S-0.025}(S-) under different real waters. The solid lines represent the simulated curves based on the pseudo-first-order reaction kinetic model. The initial concentration of S-nZVI^{S-0.025} particles and TBBPA are 2.3 g L⁻¹ and 5 mg L⁻¹, respectively.

Sample		Species	B.E (eV)	Relative peak area (%)
		Fe ⁰	706.5	16.94
nZVI	Fe(2p _{3/2})	Fe(II)-O	710.1	63.32
		Fe(III)-O	713.5	19.74
		Fe ⁰ / Fe(II)-S	706.7	15.68
S-nZVI-0.015		Fe(II)-S	707.4	34.29
	$Fe(2p_{3/2})$	Fe(II)-O	709.8	43.22
		Fe(III)-O	712.9	6.81
	S(2p _{3/2})	S ²⁻	161.4	62.42
		S ₂ ²⁻	162.5	37.58
		Fe ⁰ / Fe(II)-S	706.8	16.57
	Fe(2p _{3/2})	Fe(II)-S	707.6	37.63
S n7VI 0 025		Fe(II)-O	709.8	36.30
S-IIZ VI-0.025		Fe(III)-O	712.6	9.50
	S(2n)	S ²⁻	161.4	62.65
	S(2p _{3/2})	S_2^{2-}	162.6	37.35
		Fe ⁰ / Fe(II)-S	706.9	8.09
S n7VI 0.05		Fe(II)-S	707.6	30.45
3-11Z v 1-0.03	$Fe(2p_{3/2})$	Fe(II)-O	709.4	49.54
		Fe(III)-O	712.5	11.92

Table S1. Binding energy and relative peak area of XPS peaks of $Fe(2p_{3/2})$ and $S(2p_{3/2})$ elementson the surface of nZVI and S-nZVI^S samples

Sample		Species	B.E (eV)	Relative peak area (%)
S-nZVI-0.05	S(2n)	S ²⁻	161.6	61.60
	S(2p _{3/2})	S_2^{2-}	162.8	38.40
		Fe ⁰ / Fe(II)-S	706.8	7.97
S-nZVI-0.1	$E_{2}(2n)$	Fe(II)-S	707.6	18.07
	re(2p _{3/2})	Fe(II)-O	708.8	59.99
		Fe(III)-O	712.0	13.97
	S(2p _{3/2})	S ²⁻	161.4	60.09
		S_2^{2-}	162.4	39.91
		Fe ⁰ / Fe(II)-S	706.6	6.82
	$E_2(2n)$	Fe(II)-S	707.3	30.59
S-nZVI-0.25	$re(2p_{3/2})$	Fe(II)-O	709.0	49.24
		Fe(III)-O	712.2	13.35
	S(2n)	S ²⁻	161.7	69.56
	$S(2p_{3/2})$	S_2^{2-}	163.1	30.44

Theoretical S/Fe		Atomic ratio (%)				
	Actual S/Fe	Fe	S	0	С	
0	0	62.69	Ν	4.89	32.42	
0.015	0.012	83.39	1.01	3.21	12.39	
0.025	0.023	68.41	1.62	3.30	26.68	
0.05	0.038	60.17	2.31	5.80	31.71	
0.1	0.07	72.18	5.06	5.42	17.33	
0.25	0.13	62.91	8.25	6.47	22.37	

Table S2. Theoretical and actual S/Fe and relative atomic percentage of Fe, S, O, and C of SnZVI^S at different S/Fe molar ratios.

N: Not detectable

Table S3. Summary of parameters obtained from fitting HER data with the First-order passivation of Fe^0 model with *k* as global.

S/Fe	A (mmol)	<i>k</i> (h ⁻¹)	Reduced χ^2	R^2
0	0.96 ± 0.15			
0.025	0.79 ± 0.12	0.05 ± 0.01	0.002	0.94
0.25	0.41 ± 0.08			

Table S4. Summary of parameters obtained from fitting HER data with the Replacement of

	$k_{\rm H_{2},1/k_{\rm H_{2}}}$
reactive phases model with	2 / $^{R_{\rm H_2},2}$ and k as global.

S/Fe	$k_{\rm H_{2},1}/k_{\rm H_{2},2}$	$S_{1,0} \cdot k_{H_{2,2}} (mmol \cdot h^{-1})$	<i>k</i> (h ⁻¹)	Reduced χ^2	<i>R</i> ²
0		$0.02 \pm 8.54 \text{E-4}$			
0.025	10.86 ± 4.57	$0.02 \pm 7.5 \text{E-4}$	2.04 ± 1.06	3.34E-4	0.99
0.25		0.01 ± 5.53 E-4			

Table S5. Summary of parameters obtained from fitting HER data with the Advanced phasereplacement model with k_1 and k_2 as global.

S/Fe	$k_{\rm H_{2},1}/k_{\rm H_{2},2}$	$S_{1,0} \cdot k_{\mathrm{H}_{2,2}} (mmol \cdot h^{-1})$	k_1 (h ⁻¹)	k_2 (h ⁻¹)	Reduced χ^2	<i>R</i> ²
0		0.02 ± 0.005				
0.025	9.61 ± 4.31	0.02 ± 0.004	1.80± 1.18	$1E-4 \pm 0.01$	4.42E-4	0.99
0.25		0.01 ± 0.002				

Table S6. Summary of parameters obtained from fitting HER data with the Independent changesin two reactive phases with k_1 and k_2 as global.

S/Fe	A (mmol)	k_1 (h ⁻¹)	B (mmol)	k_2 (h ⁻¹)	Reduced χ^2	<i>R</i> ²
0	0.096 ± 0.017		19.77 ± 131.95			
0.025	0.096 ± 0.015	3.38 ± 5.24	15.05 ± 100.41	0.001 ± 0.01	3.05E-4	0.99
0.25	0.044 ± 0.012		8.20 ± 54.73			

S/Fe ratio	0	0.025	0.25
$E_{\rm corr}({\rm mV})$	-754	-899	-882
$I_{\rm corr} (\mu {\rm A} \cdot {\rm cm}^{-2})$	0.98	12.47	1.76
$b_{\rm c}$ (V/dec)	0.23	0.11	0.12
$b_{\rm a}$ (V/dec)	0.17	0.10	0.09
$R_{\rm p}(10^4\Omega\cdot{\rm cm}^2)$	4.62	0.18	1.27

 Table S7. Performance parameters of Tafel Curves for nZVI and S-nZVI^S.

S/Fe ratios	0	0.025	0.25
Anode potential (mV)	-62	-48	-42
Cathode potential (mV)	-368	-411	-385
Potential difference $\triangle V (mV)$	-306	-363	-343
Mid-point potential (mV)	-215	-229.5	-213.5
Anode current ($\mu A \cdot cm^{-2}$)	2.04	7.56	2.32
Cathode current ($\mu A \cdot cm^{-2}$)	-3.13	-13.45	-6.45

 Table S8. Parameters of cyclic voltammetry curves for nZVI and S-nZVI^S.

Samples	$k_{\rm obs}$ (h ⁻¹)	<i>R</i> ²
nZVI	0.13 ± 0.008	0.98
S-nZVI ^{S-0.015}	0.27 ± 0.015	0.99
S-nZVI ^{S-0.025}	1.19 ± 0.071	0.98
S-nZVI ^{S-0.05}	0.74 ± 0.066	0.96
S-nZVI ^{S-0.1}	0.13 ± 0.023	0.86
S-nZVI ^{S-0.25}	0.01 ± 0.0002	0.99
$S-nZVI^{Na_2S_2O_4-0.015}$	0.04 ± 0.003	0.97
$S-nZVI^{Na_2S_2O_4-0.025}$	0.03 ± 0.001	0.99
$S-nZVI^{Na_2S_2O_4-0.05}$	0.01 ± 0.002	0.85
$S\text{-}nZVI^{Na_2S_2O_4\text{-}0.1}$	0.02 ± 0.0009	0.99
S-nZVI ^{Na₂S₂O₄-0.5}	0.38 ± 0.02	0.99
$S-nZVI^{Na_2S_2O_4-0.75}$	0.30 ± 0.03	0.98
$S-nZVI^{Na_2S-0.015}$	0.11 ± 0.006	0.99
S-nZVI ^{Na₂S-0.025}	0.16 ± 0.018	0.94
S-nZVI ^{Na₂S-0.05}	0.11 ± 0.005	0.99
S-nZVI ^{Na₂S-0.1}	0.03 ± 0.003	0.97
S-nZVI ^{Na₂S-0.3}	0.05 ± 0.002	0.99
S-nZVI ^{Na₂S-0.5}	0.01 ± 0.007	0.14
S - $nZVI_{P}^{S-0.025}$	0.047 ± 0.002	0.99
S - $nZVI^{S-0.025}_{G}$	0.046 ± 0.002	0.99
S - $nZVI^{S-0.025}_{T}$	0.037 ± 0.0008	0.99

Table S9. Pseudo first-order rate constants (k_{obs}) for TBBPA removal by S-nZVI^S.

Physicochemical property	Unit	Ultrapure water	Tap water	Groundwater	Pearl River
рН	-	6.86	6.57	5.75	6.83
Conductivity	μS cm ⁻¹	0.76	123.4	161.9	171.0
Na ⁺	mg L ⁻¹	0	0.16	0.18	0.13
K^+	mg L ⁻¹	0	0.004	0.01	0.02
Mg^{2+}	mg L ⁻¹	0	0.08	0.09	0.09
Ca ²⁺	mg L ⁻¹	0	0.20	0.24	0.39
F-	mg L ⁻¹	0.16	1.09	1.82	1.61
Cl-	mg L ⁻¹	0.1	19.29	41.84	14.52
NO ₂ -	mg L ⁻¹	0	0.2	0.21	0.45
Br	mg L ⁻¹	0	0	0.04	0
NO ₃ -	mg L ⁻¹	0.09	3.94	9.43	5.52
SO_4^-	mg L ⁻¹	0.25	8.36	7.20	19.19
NH4 ⁺ -N	mg L ⁻¹	0	0	0	1.83
TN	mg L ⁻¹	0	4.21	9.64	7.8
ТР	mg L ⁻¹	0	0	0	0.23
BOD ₅	mg L ⁻¹	0	0	0	3
COD	mg L ⁻¹	0	3.95	6.32	18.57

 Table S10. Physicochemical properties of water samples.

References

- S. R. Rajajayavel and S. Ghoshal, Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron, *Water Res.*, 2015, 78, 144-53, DOI: 10.1016/j.watres.2015.04.009.
- Y. M. Su, A. S. Adeleye, A. A. Keller, Y. X. Huang, C. M. Dai, X. F. Zhou and Y. L. Zhang, Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal, *Water Res.*, 2015, 74, 47-57, DOI: http://dx.doi.org/10.1016/j.watres.2015.02.004.
- D. Fan, R. P. Anitori, B. M. Tebo, P. G. Tratnyek, J. S. Lezama Pacheco, R. K. Kukkadapu, M. H. Engelhard, M. E. Bowden, L. Kovarik and B. W. Arey, Reductive sequestration of pertechnetate (⁹⁹TcO₄⁻) by nano zerovalent iron (nZVI) transformed by abiotic sulfide, *Environ. Sci. Technol.*, 2013, 47, 5302-10, DOI: 10.1021/es304829z.
- H. Qin, X. H. Guan, J. Z. Bandstra, R. L. Johnson and P. G. Tratnyek, Modeling the kinetics of hydrogen formation by zerovalent iron: Effects of sulfidation on micro- and nano-scale particles, *Environ. Sci. Technol.*, 2018, **52**, 13887-13896, DOI: 10.1021/acs.est.8b04436.