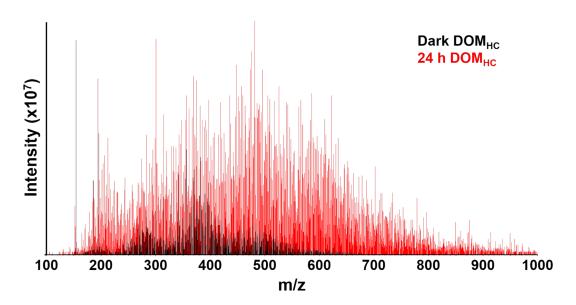
Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2020

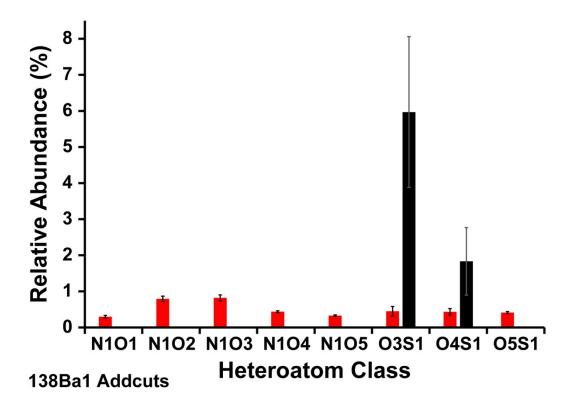
Supporting Information

Barium ion adduct mass spectrometry to identify carboxylic acid photoproducts from crude oil-water systems under solar irradiation

Phoebe Zito^{1,2*}, Donald F. Smith³, Xian Cao¹, Rana Ghannam^{1,2}, and Matthew A. Tarr¹


¹Department of Chemistry, ²Pontchartrain Institute for Environmental Sciences, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, United States ³National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States

*Corresponding Author (pazito@uno.edu)


Number of figures: 3 Number of Tables: 1 Total pages: 5

Iteration Number	Element	Minimum	Maximum
1)	С	1	100
	Н	4	200
	Ν	0	1
	0	0	6
	S	0	1
	138 Ba	1	2
	137 Ba	0	0
2)	С	1	100
	Н	4	200
	Ν	0	2
	0	0	6
	S	0	2
	138 Ba	0	0
	137 Ba	0	0
3)	С	1	100
	Н	4	200
	Ν	0	2
	0	0	15
	S	0	2
	138 Ba	0	0
	137 Ba	0	0
4)	С	1	100
	Н	4	200
	Ν	0	2
	0	0	15
	S	0	2
	138 Ba	1	2
	137 Ba	0	0
5)	С	1	100
	Н	4	200
	Ν	0	2
	0	0	15
	S	0	2
	138 Ba	1	2
	137 Ba	1	2
L			

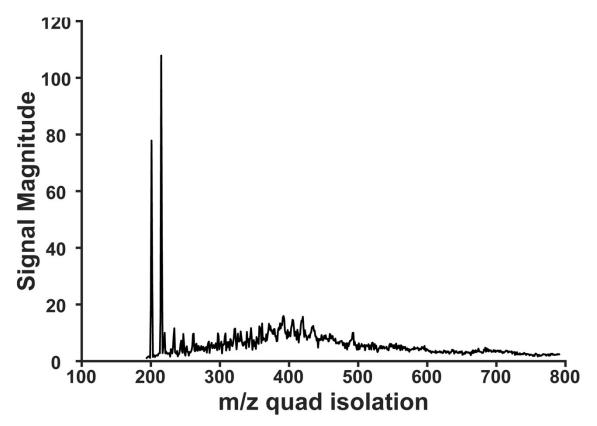

Table S1: Elemental constraints for each molecular assignment iteration.

Figure S1: Overlay of spectra comparing derivatized samples at 25 ppm C of precursor ion scan of m/z 155 showing possible $[M-H+Ba]^+$ peaks for dark (black) and irradiated DOM_{HC} (red) produced after 24 h of sunlight exposure on an AbSciex 3200 Qtrap using (+) ESI MS/MS.

Figure S2. Heteroatom class distribution for barium 138 containing adducts detected in the dark (black) and irradiated (red) DOM_{HC} . Error bars represent standard deviation (n=3).

Figure S3. Plot of m/z quad isolation vs. signal magnitude for m/z 196.918 ($C_2H_3O_2^{138}Ba^+$) detected in the DOM_{HC} after light exposure using FT-ICR MS/IRMPD.