Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2021

## **Supplementary Material**

# Brominated flame retardants (BFRs) in PM<sub>2.5</sub> associated with various source sectors in southern China

Qi-Qi Li<sup>a, b</sup>, Tao Wang<sup>c</sup>, Yuan Zeng<sup>d</sup>, Yun Fan<sup>a, b</sup>, She-Jun Chen<sup>d, \*</sup>,

and Bi-Xian Mai<sup>a</sup>

<sup>a</sup> State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China <sup>b</sup> University of Chinese Academy of Sciences, Beijing 100049, China <sup>c</sup> School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China <sup>d</sup> School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China

\*Corresponding author. E-mail address: shejun.chen@m.scnu.edu.cn

#### S1. Methods

### S1.1 Instrumental parameters

Analysis of BFRs were performed on a Shimadzu GCMS-QP 2010 plus with electron capture negative ionization mass spectrometer (GC-NCI-MS). Tri- to hepta-BDEs were separated with a DB-XLB (30 m × 0.25 mm i.d., 0.25  $\mu$ m film thickness) capillary column. Initial column temperature was held at 110 °C for 1 min, and then programmed to 180 °C at 8 °C/min (held for 1 min), to 240 °C at 2 °C/min (held for 5 min), to 280 °C at 2 °C/min (held for 15 min), and to 305 °C at 10 °C/ min (held for 7 min). For octa-BDEs through deca-BDEs, BTBPE and DBDPE, a DB-5HT (15 m × 0.25 mm i.d., 0.10  $\mu$ m film thickness) column was used. The oven temperature was initiated at 110 °C (held for 5 min), and increased to 200 °C at 20 °C/min (held for 4.5 min), and finally to 310 °C at 10 °C/min (held for 10 min). The carrier gas was Helium with a flow rate of 2.0 mL/min. The ion source, quadrupole and interface temperatures were set to 200 °C, 150 °C and 290 °C, respectively. For all the targets, injection of 1  $\mu$ L sample was performed with an automatic sampler in the splitless mode.



Fig. S1 Map of sampling sites in southern China.

| Table | <b>S1</b> . | Site | description. |
|-------|-------------|------|--------------|
|-------|-------------|------|--------------|

| Orban specific source sties |                                                                                       |      |                                                          |  |  |  |  |
|-----------------------------|---------------------------------------------------------------------------------------|------|----------------------------------------------------------|--|--|--|--|
| Site                        | Industrial sector                                                                     | Site | Industrial sector                                        |  |  |  |  |
| WWTP                        | Wastewater treatment plant                                                            | CBN  | Furnishings selling center                               |  |  |  |  |
| MSWIPP                      | Municipal waste incineration power plant                                              | GD   | Electronics shopping center                              |  |  |  |  |
| RRRP                        | Resources recycling and recovery                                                      | SL   | Leather product making                                   |  |  |  |  |
| XMK                         | Downtown residential area                                                             |      |                                                          |  |  |  |  |
| Urban indi                  | ustrial park sites                                                                    |      |                                                          |  |  |  |  |
| Site                        | Industrial sector                                                                     | Site | Industrial sector                                        |  |  |  |  |
| CS                          | Electronics, hardware mould, and shoes                                                | QH   | Electronics, metals, and mould industries                |  |  |  |  |
| DS                          | Electronic and electrical<br>equipment, Automobile<br>manufacturing                   | SB   | Electronics, plastics and foam, and metals               |  |  |  |  |
| GK                          | Machinery and clothing                                                                | SJ   | Furniture, clock, electronics, and clothing              |  |  |  |  |
| JLK                         | Chemical industry                                                                     | JL   | Automobile manufacturing and clothing                    |  |  |  |  |
| KML                         | Mechanical equipment manufacturing                                                    | ХР   | Household products, plastics and rubber, and electronics |  |  |  |  |
| LD                          | Metals, machinery, and papermaking                                                    | XK   | Leather                                                  |  |  |  |  |
| MY                          | Electrical/electronic products,<br>metals, building materials,<br>clothing, and shoes | XZ   | Chemical industry (coating and printing ink)             |  |  |  |  |
| E-waste re                  | cycling parks                                                                         |      |                                                          |  |  |  |  |
| Site                        | Industrial sector                                                                     | Site | Industrial sector                                        |  |  |  |  |
| ERP1                        | E-waste recycling                                                                     | ERP3 | E-waste recycling                                        |  |  |  |  |
| ERP2                        | E-waste recycling                                                                     | ERP4 | E-waste recycling                                        |  |  |  |  |
|                             |                                                                                       |      |                                                          |  |  |  |  |

Urban specific source sites

|                        | USS <sup>a</sup> |      | UIP <sup>a</sup> |           |      | ERP <sup>a</sup> |           |      | DF(%) and MDL (pg/m <sup>3</sup> ) |     |      |
|------------------------|------------------|------|------------------|-----------|------|------------------|-----------|------|------------------------------------|-----|------|
|                        | Range            | Mean | Median           | Range     | Mean | Median           | Range     | Mean | Median                             |     |      |
| BDE28                  | nd               | nd   | nd               | nd        | nd   | nd               | nd        | nd   | nd                                 | 0   | 0.04 |
| BDE35                  | nd-0.36          | 0.14 | 0.16             | nd-0.42   | 0.12 | nd               | nd-0.15   | 0.09 | 0.09                               | 37  | 0.03 |
| BDE37                  | nd               | nd   | nd               | nd        | nd   | nd               | nd        | nd   | nd                                 | 1.7 | 0.05 |
| BDE49                  | nd               | nd   | nd               | nd        | nd   | nd               | nd        | nd   | nd                                 | 0   | 0.03 |
| BDE47                  | nd-0.55          | 0.14 | nd               | nd-0.86   | 0.25 | 0.23             | nd-0.21   | 0.1  | 0.1                                | 52  | 0.04 |
| BDE66                  | nd-0.09          | nd   | nd               | nd        | nd   | nd               | nd        | nd   | nd                                 | 3.3 | 0.08 |
| BDE100                 | nd-0.31          | nd   | nd               | nd-0.07   | nd   | nd               | nd        | nd   | nd                                 | 6.7 | 0.07 |
| BDE99                  | nd-0.92          | 0.27 | 0.14             | nd-1.22   | 0.29 | 0.26             | nd        | nd   | nd                                 | 50  | 0.05 |
| BDE85                  | nd               | nd   | nd               | nd-0.23   | nd   | nd               | nd-0.64   | 0.17 | nd                                 | 8.3 | 0.03 |
| BDE154                 | nd-0.6           | 0.25 | 0.18             | nd-2.14   | 0.64 | 0.51             | 0.37-5.29 | 2.62 | 2.4                                | 67  | 0.05 |
| BDE153                 | nd-0.59          | 0.18 | 0.11             | nd-0.78   | 0.18 | 0.15             | 1.67-30.2 | 15.0 | 14.0                               | 85  | 0.03 |
| BDE138                 | nd-2.33          | 0.45 | 0.08             | nd-1.22   | 0.24 | nd               | nd-1.41   | 0.41 | 0.12                               | 30  | 0.03 |
| BDE183                 | 0.30-5.75        | 1.48 | 0.62             | 0.11-6.35 | 0.95 | 0.68             | 11.0-181  | 84.4 | 72.8                               | 95  | 0.02 |
| BDE202                 | nd               | nd   | nd               | nd        | nd   | nd               | nd        | nd   | nd                                 | 1.7 | 0.81 |
| BDE197                 | nd-1.72          | 0.46 | nd               | nd-5.80   | 0.59 | nd               | 2.88-47.0 | 22.8 | 20.7                               | 45  | 0.15 |
| BDE203                 | 1.20-4.74        | 2.54 | 2.24             | 1.40-4.21 | 2.57 | 2.38             | 4.87-33.0 | 18.0 | 17.0                               | 98  | 0.48 |
| BDE196                 | 1.02-3.61        | 2.47 | 2.46             | 1.76-4.89 | 2.88 | 2.70             | 4.39-32.9 | 18.6 | 18.5                               | 100 | 0.43 |
| BDE208                 | 0.74-5.37        | 2.40 | 2.00             | 0.09-4.93 | 1.70 | 1.47             | 11.2-74.8 | 36.5 | 30.0                               | 98  | 0.09 |
| BDE207                 | 1.91-8.00        | 4.26 | 3.61             | 1.04-8.06 | 3.44 | 3.38             | 16.0-129  | 61.7 | 50.9                               | 100 | 0.32 |
| BDE206                 | 2.02-6.29        | 4.14 | 3.94             | 2.66-6.63 | 4.59 | 4.33             | 8.97-96.2 | 40.2 | 27.8                               | 100 | 0.71 |
| BDE209                 | 17.7-56.8        | 36.7 | 36.3             | 13.4-86.9 | 42.8 | 41.5             | 159-1788  | 640  | 307                                | 100 | 2.31 |
| PentaBDEs <sup>b</sup> | 0.12-3.21        | 1.52 | 1.42             | 0.42-3.73 | 1.74 | 1.59             | 2.51-35.8 | 18.4 | 17.6                               | 100 | -    |
| OctaBDEs <sup>b</sup>  | 4.86-10.7        | 6.95 | 5.53             | 4.19-15.8 | 7.0  | 6.0              | 23.1-288  | 144  | 133                                | 100 | -    |
| DecaBDEs <sup>b</sup>  | 31.4-67.9        | 47.5 | 443              | 17.2-97.3 | 52.5 | 53.4             | 195-2087  | 779  | 416                                | 100 | -    |
| ∑PBDEs                 | 38.6-77.9        | 56.0 | 50.7             | 22-105    | 61.2 | 60.7             | 220-2356  | 941  | 595                                | 100 | -    |
| DBDPE                  | 50.3-113         | 71.3 | 63.4             | 27.9-455  | 121  | 65.0             | 55.8-517  | 241  | 196                                | 100 | 8.91 |
| BTBPE                  | 1.88-5.83        | 3.32 | 3.09             | 1.73-6.29 | 3.16 | 2.94             | nd-52.4   | 22.4 | 18.5                               | 100 | 0.53 |
| ∑NBFRs                 | 54.3-118         | 74.6 | 67.1             | 29.7-459  | 124  | 68.1             | 83.6-569  | 263  | 200                                | 100 | -    |
| ∑BFRs                  | 96.2-196         | 131  | 118              | 66.5-543  | 186  | 141              | 267-2635  | 1205 | 921                                | 100 | -    |

**Table S2.** Summary of concentrations  $(pg/m^3)$  of BFRs in PM<sub>2.5</sub> at the USS, UIP, and ERP sites.

<sup>a</sup> USS, urban specific source; UIP, Urban industrial park; ERP, e-waste recycling park.

<sup>b</sup> PentaBDEs, sum of BDE 28, 35, 37,49, 47, 66, 100, 99, 85, 154, 152 and 138; OctaBDEs, sum of BDE 183, 202, 197, 203 and 196; DecaBDEs, Sum of BDE 208, 206, 207 and 209. nd = not detected.



Fig. S2 Mean concentrations of  $\sum$ PBDEs and  $\sum$ NBFRs in PM<sub>2.5</sub> in the urban and e-waste regions. USS, urban specific source sites; UIP, urban industrial park sites; ERP, e-waste recycling park sites. The y-axis on the right is for ERP variables.

|                                  | PBDEs     |                  | BDI               | E <b>209</b>     | DBDPE        |                  | BTBPE         |                  | Refs. |
|----------------------------------|-----------|------------------|-------------------|------------------|--------------|------------------|---------------|------------------|-------|
| Location (Year)                  | Range     | Mean<br>(median) | Range             | Mean<br>(median) | Range        | Mean<br>(median) | Range         | Mean<br>(median) |       |
|                                  |           |                  |                   |                  | Urban site   |                  |               |                  |       |
| Shanghai, China (2012-2013)      |           | 51.8             |                   | 15.6             |              |                  |               |                  | 1     |
| Chinese cities (2013-2014)       | 0.01-1000 | 35               | 0.01-1010         | 24.7 (1.31)      | 0.24-1020    | 50 (7.51)        | 0.03-4.38     | 0.64 (0.42)      | 2     |
| Guangzhou, China (2013-2014)     | 2.51-7031 | 839 (375)        | 0.14-6797         | 792 (324)        | 0.12-6211    | 703 (365)        | 0.11-12.0     | 1.64 (0.70)      | 3     |
| Shenzhen, China (2014-2015)      | 1.33-319  | 33.5 (14.6)      | 1.17-231          | 24.8 (10.5)      |              |                  |               |                  | 4     |
| Hong Kong, China (2016)          | 100-640   |                  |                   | 37               |              |                  |               |                  | 5     |
| Beijing, China (2016-2017)       |           |                  | 4.64-92.9         | 47.0 (11.0)      | <0.11-100    | 16.1 (10.8)      | < 0.03-1.23   | 0.18 (0.10)      | 6     |
| Tianjin, China (2016-2017)       |           |                  | 1.3-35.0          | 8.76 (5.80)      | 0.33-57.7    | 6.68 (1.48)      | 0.001-1.01    | 0.12 (0.06)      | 6     |
| Shijiazhuang, China (2016-2017)  |           |                  | 5.32-104          | 25.9 (12.0)      | 0.93-51.4    | 12.1 (7.51)      | < 0.01 - 3.79 | 0.48 (0.20)      | 6     |
| Dalian, China (2016-2017)        | 245-19610 | 4294             | 244-19600         | 4291             |              |                  | 0.03-1.23     | 7.7 (1.5)        | 7     |
| Karachi, Pakistan (2020)         | 15.1-183  |                  |                   | 87.0             |              |                  |               |                  | 8     |
|                                  |           |                  | Rural/remote site |                  |              |                  |               |                  |       |
| The East China Sea, China (2012) | 1.3-33.8  | 8.07             | 0.75-31.8         | 7.1              |              |                  |               | 2.32             | 9     |
| Zhaoqing, China (2013-2014)      | 9.19-242  | 67.4 (52.4)      | 4.59-121          | 42.2 (32.5)      | 0.47-33.9    | 6.53 (5.09)      | 0.12-20.2     | 2.91 (2.45)      | 3     |
| Rural site, China (2016-2017)    |           |                  | 0.88-14.4         | 5.10 (3.61)      | 0.92-33.9    | 14.7 (10.9)      | < 0.14        | 0.04 (0.03)      | 6     |
|                                  |           |                  |                   |                  | E-waste site |                  |               |                  |       |
| E-waste site, China (2018)       |           | 16100            |                   | 652              |              |                  |               |                  | 10    |

**Table S3.** Comparison of  $PM_{2.5}$ -bound BFRs concentrations (pg/m<sup>3</sup>) in the present study with literature data.

nd = not detected.



Fig. S3 Correlation matrix for the BFRs, OPEs, PAHs, OC and EC in PM<sub>2.5</sub> in the urban region and e-waste recycling region. A confidence level of 95% was applied.



**Fig. S4** Compositions of PBDEs in the commercial mixtures: congener profiles of c-PentaBDE (A), congener profiles of c-OctaBDE (B), congener profiles of c-DecaBDE (C). Data are from the literature<sup>11</sup>, except for those of Deca-1 and -2 (two decaBDE mixtures produced in China) which are from the literature<sup>12</sup>.

| Compd. | Mol wt | Log K <sub>OW</sub> | VP (Pa) <sup>b</sup> | S (mg/L) <sup>c</sup> | Log K <sub>OA</sub> | Half-life (d) | $P_{OV}(hr)$ |
|--------|--------|---------------------|----------------------|-----------------------|---------------------|---------------|--------------|
| BDE28  | 406.9  | 5.88                | 0.00122              | 0.02642               | 9.396               | 7.57          | 1810         |
| BDE47  | 485.8  | 6.77                | 0.000211             | 0.001461              | 10.686              | 10.661        | 5740         |
| BDE66  | 485.8  | 6.77                | 0.000815             | 0.001461              | 10.686              | 10.579        | 5740         |
| BDE99  | 564.69 | 7.66                | 4.13 E-06            | 0.000394              | 11.157              | 19.439        | 5370         |
| BDE100 | 564.69 | 7.66                | 0.000144             | 7.86E-05              | 11.977              | 14.856        | 6770         |
| BDE153 | 643.59 | 8.55                | 2.48 E-05            | 4.15E-06              | 13.265              | 46.163        | 7170         |
| BDE154 | 643.59 | 8.55                | 2.48 E-05            | 4.15E-06              | 13.265              | 28.885        | 7140         |
| BDE183 | 722.48 | 9.44                | 4.21E-06             | 2.16E-07              | 14.554              | 64.327        | 7220         |
| BDE196 | 801.38 | 10.33               | 6.99E-07             | 1.11E-08              | 15.845              | 98.714        | 7240         |
| BDE203 | 801.38 | 10.33               | 164                  | 2.68E-07              | 14.225              | 93.62         | 7380         |
| BDE206 | 880.28 | 11.22               | 1.14E-07             | 5.63E-10              | 17.134              | 161.004       | 7250         |
| BDE207 | 880.28 | 11.22               | 1.14E-07             | 5.63E-10              | 17.134              | 141.472       | 7250         |
| BDE208 | 880.28 | 11.22               | 1.14E-07             | 5.63E-10              | 17.134              | 161.004       | 7250         |
| BDE209 | 959.17 | 12.11               | 6.32E-07             | 2.84E-11              | 18.423              | 317.534       | 7260         |
| DBDPE  | 971.23 | 13.64               | 9.33E-09             | 1.16E-12              | 19.221              | 4.466         | 6880         |
| Nap    | 128.18 | 3.17                | 39.9                 | 31                    | 5.045               | 0.495         | 873          |
| Acy    | 152.2  | 3.94                | 4.15                 | 16.1                  | 6.272               | 0.142         | 447          |
| Ace    | 154.21 | 4.15                | 1.36                 | 3.9                   | 6.044               | 0.16          | 1000         |
| Flu    | 166.22 | 4.02                | 0.619                | 1.69                  | 6.585               | 1.208         | 471          |
| Phe    | 178.24 | 4.35                | 0.0875               | 1.15                  | 7.222               | 0.823         | 1790         |
| Ant    | 178.24 | 4.35                | 0.0659               | 0.0434                | 7.093               | 0.267         | 1800         |
| Fla    | 202.26 | 4.93                | 0.00811              | 0.26                  | 8.601               | 0.366         | 2350         |
| Pyr    | 202.26 | 4.93                | 0.0106               | 0.135                 | 8.193               | 0.214         | 2340         |
| BaA    | 228.3  | 5.52                | 0.000107             | 0.0094                | 9.069               | 0.214         | 3130         |
| Chr    | 228.3  | 5.52                | 0.000168             | 0.00345               | 9.48                | 0.214         | 3360         |
| BbF    | 252.32 | 6.11                | 0.00173              | 0.0015                | 10.351              | 0.576         | 4360         |
| BkF    | 252.32 | 6.11                | 1.02E-05             | 0.0008                | 10.732              | 0.199         | 4200         |
| BeP    | 252.32 | 6.11                | 2.45E-05             | 0.0063                | 11.351              | 0.214         | 4140         |
| BaP    | 252.32 | 6.11                | 0.000107             | 0.00162               | 10.859              | 0.214         | 4220         |
| Per    | 252.32 | 6.11                | 0.000203             | 0.0004                | 10.076              | 0.214         | 4200         |
| IcdP   | 276.34 | 6.7                 | 4.44E-07             | 0.00019               | 11.547              | 0.166         | 4630         |
| DahA   | 278.36 | 6.7                 | 3.33E-05             | 0.00249               | 11.779              | 0.214         | 4690         |
| BghiP  | 276.34 | 6.7                 | 4.24E-06             | 0.00026               | 11.499              | 0.123         | 4590         |

Table S4. Physicochemical properties of selected target BFRs and PAHs<sup>a</sup>.

<sup>a</sup> The physicochemical properties were estimated using US EPA EPI program. <sup>b</sup> Liquid/subcooled vapor pressure at 25 °C. °Water solubility at 25 °C.

#### Reference

- 1. Y. Li, L. Chen, D. M. Ngoc, Y. P. Duan, Z. B. Lu, Z. H. Wen and X. Z. Meng, Polybrominated diphenyl ethers (PBDEs) in PM<sub>2.5</sub>, PM<sub>10</sub>, TSP and gas phase in office environment in Shanghai, China: Occurrence and human exposure, *PLos One*, 2015, **10**, e0119144.
- D. Liu, T. Lin, K. Shen, J. Li, Z. Yu and G. Zhang, Occurrence and concentrations of halogenated flame retardants in the atmospheric fine particles in Chinese cities, *Environ. Sci. Technol.*, 2016, 50, 9846-9854.
- 3. N. Ding, S. J. Chen, T. Wang, T. Wang and B. X. Mai, Halogenated flame retardants (HFRs) and water-soluble ions (WSIs) in fine particulate matter (PM<sub>2.5</sub>) in three regions of South China, *Environ. Pollut.*, 2018, **238**, 823-832.
- 4. J. Peng, D. Wu, Y. Jiang, J. Zhang, X. Lin, S. Lu, P. Han, J. Zhou, S. Li, Y. Lei and J. Chen, Spatiotemporal variability of polybrominated diphenyl ether concentration in atmospheric fine particles in Shenzhen, China, *Environ. Pollut.*, 2018, **238**, 749-759.
- W. J. Deng, H. L. Zheng, A. K. Tsui and X. W. Chen, Measurement and health risk assessment of PM<sub>2.5</sub>, flame retardants, carbonyls and black carbon in indoor and outdoor air in kindergartens in Hong Kong, *Environ. Int.*, 2016, 96, 65-74.
- W. Zhang, P. Wang, Y. Zhu, R. Yang, Y. Li, D. Wang, J. Matsiko, X. Han, J. Zhao, Q. Zhang, J. Zhang and G. Jiang, Brominated flame retardants in atmospheric fine particles in the Beijing-Tianjin-Hebei region, China: Spatial and temporal distribution and human exposure assessment, *Ecotoxicol. Environ. Saf.*, 2019, **171**, 181-189.
- 7. Y. Wang, Y. Zhang, F. Tan, Y. Yang, Z. Qu, J. Kvasnicka and J. Chen, Characteristics of halogenated flame retardants in the atmosphere of Dalian, China, *Atmos. Environ.*, 2020, **223**, 117219.
- 8. J. H. Syed, M. Iqbal, K. Breivik, M. J. I. Chaudhry, M. Shahnawaz, Z. Abbas, J. Nasir, S. H. H. Rizvi, M. M. Taqi, J. Li and G. Zhang, Legacy and emerging flame retardants (FRs) in the urban atmosphere of Pakistan: Diurnal variations, gas-particle partitioning and human health exposure, *Sci. Total Environ.*, 2020, **743**, 140874.
- 9. Y. Li, T. Lin, F. Wang, T. Ji and Z. Guo, Seasonal variation of polybrominated diphenyl ethers in PM<sub>2.5</sub> aerosols over the East China Sea, *Chemosphere*, 2015, **119**, 675-681.
- J. Guo, L. Patton, J. Wang and Z. Xu, Fate and migration of polybrominated diphenyl ethers in a workshop for waste printed circuit board de-soldering, *Environ. Sci. Pollut. Res.*, 2020, 27, 30342-30351.
- 11. M. L. GUARDIA, R. HALE and E. NHARVEY, Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures, *Environ. Sci. Technol.*, 2006, **40**, 6247-6254.
- 12. Y. Luo, X. Luo, Z. Lin, S. Chen, J. Liu, B. Mai and Z. Yang, Polybrominated diphenyl ethers in road and farmland soils from an e-waste recycling region in Southern China: Concentrations, source profiles, and potential dispersion and deposition, *Sci. Total Environ.*, 2009, **407**, 1105-1113.