Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2021

Supporting Information for

Characterization of Inhalation Exposure to Gaseous Elemental Mercury During Artisanal Gold Mining and E-Waste Recycling Through Combined Stationary and Personal Passive Sampling

Melanie A. Snow,¹ Godfred Darko,² Opoku Gyamfi,² Eugene Ansah,² Knut Breivik,^{3,4} Christopher Hoang,¹ Ying Duan Lei,¹ Frank Wania^{1,*}

¹Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4

²Department of Chemistry, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana

³Norwegian Institute for Air Research, P.O. Box 100, NO-2027 Kjeller, Norway

⁴Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315 Oslo, Norway

*Corresponding author: <u>frank.wania@utoronto.ca</u>, Tel. +1-416-287-7225

Table of Content

		Page
Figure S1	Pictures of the ASGM activities in community 1 in Ghana	S2
Figure S2	Pictures of the ASGM activities in community 2 in Ghana	S3
Figure S3	Pictures of the waste recycling facility in Norway	S4
Figure S4	Participant card used to collect all information during personal exposure measurements in Ghana and Norway.	S5
Section S1	Instrument Calibration and Sample Analysis	S6
Table S1	Method details for the analysis of PASs for GEM using the AMA-254 analyzer	S6
Table S2	Method details for the analysis of PASs for GEM using the MA-3000 analyzer	S6
Table S3	Summary of data from stationary PASs deployed in ASGM Community 1	S8
Table S4	Summary of data from stationary PASs deployed in ASGM Community 2	S8
Table S5	Summary of data on daily exposure of participants classified by (self- reported) occupation in ASGM Community 1	S9
Table S6	Summary of data on daily exposure of participants classified by (self- reported) occupation in ASGM Community 2	S12
Table S7	Summary of data from stationary PASs deployed in e-waste facility	S14
Table S8	Summary of data on daily exposure of participants classified by (self-reported) occupation in e-waste facility.	S15

Figure S1Pictures of the ASGM activities in community 1 in Ghana

Figure S2 Pictures of the ASGM activities in community 2 in Ghana.

Figure S3Pictures of the waste recycling facility in Norway

	Personal Mercury Exposure Study – Participant Card									
Place of Work	or Residence:									
Please Indicate	e your Job and	Required Duties:								
Age Range:	13-15 🗆	16-17 □	18+ 🗆							
, ige nanger			tion – Please Update Daily							
Day 1										
Monitor Numb	er:	Time Placed:	Time Removed:							
Day 2										
Monitor Numb	er:	Time Placed:	Time Removed:							
Day 3										
Monitor Numb	er:	Time Placed:	Time Removed:							
Day 4 Monitor Numb	or:	Time Placed:	Time Removed:							
Day 5	<u> </u>	Time Flaced.	Time Kenioved.							
Monitor Numb	er:	Time Placed:	Time Removed:							
		<u></u>								
		TOR	ersity of ONTO orough							

Figure S4 Participant card used to collect all information during personal exposure measurements in Ghana and Norway.

Section S1: Instrument Calibration and Sample Analysis

To determine the amount of total mercury adsorbed to the HGR-AC in a PAS or a pumped sampling tube, we applied thermal decomposition, amalgamation and atomic absorption spectroscopy (US EPA Method 7473) using an AMA-254 trace mercury analyzer (Leco Instruments Ltd, ON, CA) or a MA-3000 Direct thermal decomposition mercury analyzer (Nippon Instruments Corporation, TYO, JP) with oxygen as the carrier gas, (see Tables S1 and S2 for method parameters). Calibration standards with Hg concentrations of 0.1, 1, and 10 mg L⁻¹ were prepared by diluting a 1000 mg L⁻¹ stock solution of 1000 ± 5 mg L⁻¹ Hg in 10 % w/w HCl (Inorganic Ventures, Virginia USA) in 1 % w/w metal grade concentrated nitric acid (Millipore Sigma, MA, USA). New Hg standards were prepared every 30 days.

Method Step	Time (s)	Duty Cycle (%)
Drying Time	30	9
Decomposition Time	330	100
Cuvette Clear Time	45	-
Dosing Delay Time	20	-
Boat Cooling Time	20	-
Total Time:	445	

Table S1 Method details for the analysis of PASs for GEM using the AMA-254 analyzer

Method Step	Time (s)	Temperature	Duty Cycle Range (%)
Drying Time	30	150	10
1 st Decomposition	150	240	10-50
2 nd Decomposition	120	650	100
Total Time:	300		

Instrument calibration was completed by the addition of liquid Hg standards to clean, unexposed HGR-AC sorbent, covered with a thin layer (~0.2 g) of sodium carbonate (Na₂CO₃). Given the large range of mercury concentrations that may be encountered in the context of personal exposure monitoring along with the uncertainty in potential exposure, instrument calibration was intensive covering a large range to ensure accurate results were obtained. Calibration curves were prepared to maximize the number of analyzed samples falling near the middle of each curve. Both low and high cell calibrations curves for the low cell consisted of 0, 1, 2.5, 5, 10 and 15 ng of Hg, while the high cell curves consisted of 15, 20, 25, 50, 100, 150, 250 and 500 ng of Hg.

For analysis, the sorbent is removed from the holder, analytically weighed, and then transferred into clean sample boats for analysis. Before analysis, samples were ranked from lowest – highest expected Hg content and then ran in this order. Although not a fool-proof method, this reduces the chance of a potential memory effect of a highly contaminated sample inadvertently increasing the observed concentration of a less contaminated sample analyzed subsequently. Samples with low expected levels of Hg were run using a dosing feature which allows multiple

samples to undergo thermal decomposition in succession while each quantity of GEM is trapped in the gold amalgamator tube. The sample then passes through the cuvette system and is detected in its entirety. For samples of high expected concentrations, a small (~0.02 g) subsample was analyzed to determine the approximate GEM concentration of the sample. For practicality reasons samples that could not be analyzed in whole due to exceptionally large concentrations were well mixed via manual shaking and three sub-samples of each were analyzed. The mass of Hg detected in the sub-samples was then mass adjusted according to the following equation:

$$mHg_{total} = \sum mHg_{detected} \times \frac{m_{sample}}{\sum m_{analyzed}}$$

Where, mHg_{detected} is the summation of the quantity of blank-corrected Hg detected in all analyzed sub-samples, m_{sample} is the mass of HGR-AC for the entire sample (g), and m_{analyzed} is the summation of the mass of HGR-AC analyzed for all sub-samples (g).

During thermal decomposition of the HGR-AC, SO₂ is released resulting in pre-mature poisoning of the catalyst tube. To minimize the effect and further improve analysis economy catalyst tubes were modified by addition of ~5 g Na₂CO₃ plug and a thin layer of Na₂CO₃ (approximately 0.2 g) was added directly on top of each sample, standard, and reference material before analysis. Anhydrous NaCO₃ was purchased commercially (VWR International LLC. ON, CA) and baked overnight at 450 °C before use. The addition of the Na₂CO₃ aids to increase the lifetime of the catalyst.⁷⁴

To maintain effective quality assurance and quality control, analytical and field blanks as well as continuing calibration verification (CCV) and reference standards were utilized. Clean HGR-AC was used as the analytical blank and was analyzed to confirm instrument baseline levels and performance. Samples were blank corrected by multiplying the mean field blank Hg concentration (ng g_{HGR-AC}^{-1}) by the mass of HGR-AC (g) in a given sample and subtracting this value from the mass of Hg (ng) found in that sample. A high sulfur, bituminous coal standard reference material, NIST 2685c (National Institute of Standards and Technology, Maryland USA) with a concentration of 149.4 ng/g of Hg as well as an in-house prepared powdered HGR-AC sorbent loaded with a Hg concentration of 34.8 ng/g_{HGR-AC} (loaded carbon) were used as reference standards. Alternating reference standards were analyzed every 5-10 samples. Calibration checks were completed every 5-10 samples by alternating the analysis of 5 and 10 ng of Hg using the 0.1 mg/L calibration standard.

Samples were blank corrected by multiplying the mean field blank Hg concentration (ng g_{HGR-AC} ⁻¹) by the mass of HGR-AC (g) in a given sample and subtracting this value from the mass of Hg (ng) found in that sample. The limit of detection (LOD) and limit of quantification (LOQ) in ng of Hg were defined as three and ten times the standard deviation of the field blanks, respectively. The method detection limit (MDL) and method quantification limit (MQL) in ng/m³ were defined as the LOD and LOQ, respectively, divided by the temperature corrected *SR* for a given experiment multiplied by the average deployment time (days) for that experiment.

		Tatal		Ratio of Air Cor	centrations to:
Sample Number	Blank Adjusted Sorbed Hg (ng)	Total Deployment (days)	Air Concentration (ng/m3)	WHO & ATSDR MRL (200 ng/m3)	ACGIH TLV (25 000 ng/m3)
311	180	2.21	630	3.2	
312	200	2.19	700	3.5	
313	120	2.19	360	1.8	
314	210	2.19	620	3.1	
315	180	2.19	530	2.7	
316	170	2.19	510	2.5	
317	130	2.18	380	1.9	
318	120	2.18	840	4.2	
319	140	2.18	410	2.1	
320	170	2.18	1,550	7.7	0.1
321	300	2.18	900	4.5	
322	1,110	2.18	31,430	157	1.3
323	540	2.19	1,580	7.9	0.1
324	420	2.17	1,240	6.2	
325	490	2.17	1,450	7.2	0.1
326	280	2.16	840	4.2	
327	80	2.18	740	3.7	
328	250	2.16	740	3.7	
329	280	2.16	840	4.2	
330	200	2.15	900	4.5	

Table S3Summary of data from stationary PASs deployed in ASGM Community 1

Table S4	Summary of data from static	onary PASs deployed in AS	GM Community 2

Sample Number	Blank Adjusted Sorbed Hg (ng)	Total Deployment (days)	Air Concentration (ng/m3)	Ratio of Air Concentrations to WHO & ATSDR MRL (200 ng/m3)
335	0.2	1.23	<lod< td=""><td></td></lod<>	
338	4.2	1.23	<lod< td=""><td></td></lod<>	
339	5.5	1.22	<loq (30)<="" td=""><td>0.2</td></loq>	0.2
340	67.2	1.26	360	1.8
341	30.5	1.26	160	0.8
342	9.0	1.26	<loq (50)<="" td=""><td>0.2</td></loq>	0.2
343	3.0	1.25	<lod< td=""><td></td></lod<>	
344	7.0	1.13	<loq (40)<="" td=""><td>0.2</td></loq>	0.2
345	8.4	1.12	<loq (50)<="" td=""><td>0.2</td></loq>	0.2

									Ratio	of Air Co	ncentrati	on to:
Participant Code	Job Description	Age Range	Day	PAS #	Blank Adjusted Sorbed Hg(ng)	Total Deployment (days)	Air Concentration (ng/m3)	Average Air Concentration of Multiday Participants (ng/m3)	WHO & ASTDR MRL (2000g/m3)	ACGIH TLV (25 000 ng/m3)	NIOSH REL (50 000 ng/m3)	OSHA PEL (100 000 ng/m3)
А	Digging, Washing	18+	1	175	21.0	0.25	1,090		5			
А	Digging, Washing	18+	2	197	205	0.30	9,070	14,600	45			
Α	Digging, Washing	18+	3	228	765	0.30	33,770		169	1	1	
В	Student	13-15	1	209	4280	0.27	207,510	132,700	1038	8	4	2
В	Student	13-15	3	220	1400	0.32	57,850	132,700	289	2	1	1
С	Digging, Trading	18+	2	205	2530	0.30	113,480	104,300	567	5	2	1
С	Digging, Trading	18+	3	226	2170	0.30	95,060	104,300	475	4	2	1
D	Burning, Digging, Washing	18+	3	221	30.9	0.32	1,280		6			
E	Burning, Digging, Washing	18+	1	182	52.7	0.26	2,710	39,600	14			
E	Burning, Digging, Washing	18+	2	201	1700	0.29	76,530	39,000	383	3	2	1
F	Digging, Washing	18+	3	232	41.5	0.29	1,900		10			
G	Supervisor	18+	1	173	133	0.27	6,590		33			
G	Supervisor	18+	2	196	41.9	0.29	1,880	4,600	9			
G	Supervisor	18+	3	218	128	0.32	5,230		26			
н	Burning, Crushing, Digging	18+	2	210	193	0.29	8,670	217,800	43			
Н	Burning, Crushing, Digging	18+	3	230	9530	0.30	426,850	217,000	2134	17	9	4
I	Drilling	18+	1	189	17.3	0.25	910	900	5			

Table S5Summary of data on daily exposure of participants classified by (self-reported) occupation in ASGM Community 1.

1	Drilling	18+	2	208	19.5	0.29	900		4			
I	Drilling	18+	3	223	9.6	0.32	<loq (390)<="" td=""><td></td><td>2</td><td></td><td></td><td></td></loq>		2			
J	Sieving	18+	1	188	166	0.26	8,470		42			
J	Sieving	18+	2	202	91.0	0.29	4,100	6,300	21			
К	Bar Operator	18+	1	185	36.5	0.25	1,970		10			
к	Bar Operator	18+	2	198	40.7	0.29	1,850	6,300	9			
к	Bar Operator	18+	3	217	370	0.33	15,000		75	1		
L	Burning, Crushing, Digging	18+	1	184	17.0	0.25	910	12 100	5			
L	Burning, Crushing, Digging	18+	2	211	501	0.28	23,880	12,400	119	1		
М	Student	13-15	3	231	113	0.30	5,080		25			
Ν	Sieving	18+	1	190	96.7	0.24	5,250		26			
Ν	Sieving	18+	2	194	38.4	0.30	1,700	2,700	8			
Ν	Sieving	18+	3	216	30.1	0.33	1,210		6			
0	Sieving	18+	1	187	84.0	0.25	4,470		22			
0	Sieving	18+	2	207	106	0.30	4,700	4,000	24			
0	Sieving	18+	3	224	66.0	0.32	2,710		14			
Q	Sieving	18+	2	212	128	0.31	5,520	3,800	28			
Q	Sieving	18+	3	215	54.4	0.33	2,170	5,800	11			
R	Weaving	18+	1	186	57.3	0.25	3,050		15			
R	Weaving	18+	2	206	48.1	0.29	2,170	2,300	11			
R	Weaving	18+	3	222	42.6	0.33	1,730		9			
S	Burning, Crushing, Digging, Washing	18+	1	174	152	0.26	7,670	4,500	38			
S	Burning, Crushing, Digging, Washing	18+	2	203	27.8	0.29	1,260	4,300	6			
Т	Sieving	18+	3	234	34.8	0.29	1,570		8			
U	Digging, Washing	18+	1	181	150	0.26	7,660	54,400	38			
U	Digging, Washing	18+	2	200	2,200	0.29	101,200	54,400	506	4	2	1
V	Washing	18+	1	179	31.8	0.26	1,620	36,500	8			
V	Washing	18+	2	204	1,600	0.30	71,430	30,300	357	3	1	1
W	Burning, Crushing, Digging, Washing	18+	3	233	12,000	0.30	531,350		2657	21	11	5
Х	Chop Bar Operator	18+	1	192	1.2	0.25	<lod< td=""><td></td><td></td><td></td><td></td><td></td></lod<>					
х	Chop Bar Operator	18+	2	195	5.0	0.30	<lod< td=""><td></td><td>1</td><td></td><td></td><td></td></lod<>		1			

x	Chop Bar Operator	18+	3	219	22.9	0.33	910		5			
Y	Driver	18+	1	176	1,300	0.43	39,700		198	2	1	0
Y	Driver	18+	2	199	238	0.32	9,870	63,200	49			
Y	Driver	18+	3	229	3,260	0.31	139,910		700	6	3	1
Z	Seamstress	18+	1	183	13.3	0.28	<loq (620)<="" td=""><td></td><td>3</td><td></td><td></td><td></td></loq>		3			
Z	Seamstress	18+	2	213	94.4	0.29	4,250	3,000	21			
Z	Seamstress	18+	3	225	45.9	0.33	1,840		9			

							1	1
Participant Code	Job Description	Day	PAS #	Blank Adjusted Sorbed Hg (ng)	Total Deployment (days)	Air Concentration (ng/m³)	Average Air Concentration of Multiday Participants (ng/m ³)	Ratio of Air Concentration to WHO & ASTDR MRL (200 ng/m ³)
1	Researcher	1	243	7.4	0.41	<loq (240)<="" td=""><td></td><td></td></loq>		
2	Researcher	1	244	5.1	0.40	<loq (170)<="" td=""><td></td><td></td></loq>		
2	Researcher	2	267	0.1	0.37	<lod< td=""><td></td><td></td></lod<>		
3	Researcher	1	241	19.1	0.41	610	410	3.1
3	Researcher	2	266	5.8	0.38	<loq (200)<="" td=""><td>410</td><td></td></loq>	410	
4	Guide	1	250	4.9	0.34	<loq (190)<="" td=""><td></td><td></td></loq>		
5	Shop Attendant	1	237	1.0	0.35	<lod< td=""><td></td><td></td></lod<>		
5	Shop Attendant	2	289	0.6	0.27	<lod< td=""><td></td><td></td></lod<>		
6	Food Seller	1	258	4.4	0.30	<loq (190)<="" td=""><td></td><td></td></loq>		
7	Food Seller	1	236	3.1	0.35	<lod< td=""><td></td><td></td></lod<>		
8	Motorcycle Rider	1	239	8.3	0.30	<loq (360)<="" td=""><td></td><td></td></loq>		
9	Cocoa Farmer	1	242	7.6	0.30	<loq (330)<="" td=""><td></td><td></td></loq>		
10	Soil Carrier	1	247	1.7	0.34	<lod< td=""><td></td><td></td></lod<>		
10	Soil Carrier	2	276	0.0	0.34	<lod< td=""><td></td><td></td></lod<>		
11	Soil Carrier	1	248	17.1	0.31	730	650	3.6
11	Soil Carrier	2	275	11.6	0.27	560	000	2.8
12	Soil Carrier	1	252	5.0	0.28	<loq (240)<="" td=""><td>440</td><td></td></loq>	440	
12	Soil Carrier	2	274	15.9	0.33	640	440	3.2
13	Soil Carrier	1	245	6.4	0.30	<loq (280)<="" td=""><td></td><td></td></loq>		
14	Soil Carrier	1	246	3.8	0.32	<loq (160)<="" td=""><td></td><td></td></loq>		
15	Soil Carrier	1	249	2.0	0.32	<lod< td=""><td></td><td></td></lod<>		

Table S6Summary of data on daily exposure of participants classified by (self-reported) occupation in ASGM Community 2.

16	Soil Carrier	1	255	0.2	0.33	<lod< th=""><th></th><th></th></lod<>		
17	Soil Carrier, Supervisor	1	254	4.1	0.28	<loq (200)<="" td=""><td></td><td></td></loq>		
18	Soil Carrier, Nursing Mother	1	253	20.1	0.37	720		3.6
19	Crushing	1	288	3.4	0.27	<loq (170)<="" td=""><td></td><td>0.0</td></loq>		0.0
20	Digging	1	287	20.7	0.27	1,010		5.0
21	Crushing	1	286	0.6	0.27	<lod< td=""><td></td><td>5.0</td></lod<>		5.0
22	Crushing, Digging	2	285	3.5	0.27	<loq (170)<="" td=""><td></td><td></td></loq>		
23	Shop Attendant (day 1)	1	238	0.0	0.35	<lod< td=""><td></td><td></td></lod<>		
23	Crushing (day 2)	2	284	1.2	0.27	<lod< td=""><td></td><td></td></lod<>		
24	Crushing	2	283	3.3	0.27	<loq (160)<="" td=""><td></td><td></td></loq>		
25	Digging	2	282	141	0.27	6,830		34.2
26	Crushing, Digging	2	281	0.1	0.27	<lod< td=""><td></td><td>0</td></lod<>		0
27	Crushing, Digging	2	279	1.1	0.27	<lod< td=""><td></td><td></td></lod<>		
28	Crushing, Digging	2	278	1.0	0.27	<lod< td=""><td></td><td></td></lod<>		
29	Crushing, Digging	2	277	45.8	0.27	2,210		11.1
30	Crushing, Digging	1	257	19.8	0.28	920		4.6
30	Crushing, Digging	2	273	30.9	0.28	1,430	1180	7.2
31	Crushing, Digging	1	256	1.6	0.28	<lod< td=""><td></td><td></td></lod<>		
31	Crushing, Digging	2	272	37.4	0.28	1,730		8.7
32	Crushing, Digging	2	271	11.6	0.29	530		2.6
33	Crushing, Digging	1	260	129	0.28	6,190		30.9
33	Crushing, Digging	2	270	13.0	0.29	590	3390	3.0
34	Crushing, Digging	1	259	12.2	0.28	580	100	2.9
34	Crushing, Digging	2	269	8.2	0.29	<loq (370)<="" td=""><td>480</td><td></td></loq>	480	
35	Crushing, Digging	1	251	31.8	0.32	1,320	4700	6.6
35	Crushing, Digging	2	268	51.9	0.31	2,230	1780	11.2
36	Crushing, Digging, Grinding	1	262	8.2	0.23	470		2.4
36	Crushing, Digging, Grinding	2	265	1.0	0.38	<lod< td=""><td></td><td></td></lod<>		
37	Crushing, Digging, Grinding	1	263	3.7	0.23	<loq (210)<="" td=""><td>530</td><td></td></loq>	530	
37	Crushing, Digging, Grinding	2	264	24.8	0.38	860	530	4.3
38	Smelting/Burning	1	240	46.5	0.36	1710		8.5

Sample Number	Blank Adjusted Sorbed Hg (ng)	Total Deployment (days)	Air Concentration (ng/m3)	Comparison to WHO & ATSDR MRL (200 ng/m3)			
1	33.6	4.13	58.9	0.3			
2	17.8	4.12	31.2	0.2			
3	1.6	4.12	2.8				
4	1.8	4.13	3.1				
5	0.9	4.13	1.6				
6	2.2	4.13	3.8				
7	1.7	4.13	3.0				
9	42.9	4.14	75.0	0.4			
11	184.8	4.14	322.0	1.6			
12	653.8	4.14	1140.0	5.7			
13A	0.8	4.07	1.4				
13B	1.1	4.07	1.9				
14	0.8	4.09	1.4				
15	0.6	4.08	1.1				
16	0.5	4.07	0.9				
17	1.0	4.07	1.7				
18A	1.7	4.07	3.0				
18B	1.7	4.07	3.0				
19	0.6	4.07	1.0				
20	0.6	3.88	1.2				

Table S7 Summary of data from stationary PASs deployed in e-waste facility

Participant Code	Age Range	Job Description	Day Participated - Sample Number	Blank Adjusted Sorbed Hg (ng)	Total Deployment (days)	Air Concentration (ng/m^3)	Average Air Concentration (ng/m ³)	Comparison to WHO & ATSDR MRL (200 ng/m3)
1	40+	Plant Operator – Alternates between operating machines and sorting waste each day	1 - Y11 2 - Y12	12.8 85.6	0.50 0.33	380 3,850	2,120	1.9 19.2
2	40+	Excavator Operator – Alternates between operating machines and sorting waste each day	1 - Y21 2 - Y22 3 - Y23	2.7 61.1 1.8	0.50 0.33 0.34	80 2,750 80	970	0.4 13.7 0.4
3	18-39	General Employee – Sorting	1 - Y31 2 - Y32 3 - Y33	7.1 35.7 6.9	0.50 0.34 0.34	210 1,590 300	700	1.1 7.9 1.5
4	40+	General Employee – Sorting	1 - Y41 2 - Y42	13.9 28.1	0.34 0.34	620 1,250	930	3.1 6.2
5	18-39	General Employee – Sorting	1 - Y51 2 - Y52	16.6 74.5	0.30 0.34	850 3,250	2,050	4.2 16.3
6	18-39	General Employee – Sorting	1 - Y61 2 - Y62 3 - Y63	17.3 35.3 31.0	0.30 0.35 0.34	880 1,500 1,380	1,250	4.4 7.5 6.9
7	18-39	Operations Manager – Drives a truck which transports shredded waste	1 - Y71 2 - Y72 3 - Y73	2.2 1.6 4.8	0.42 0.35 0.33	80 70 220	120	0.4 0.3 1.1
8	40+	Accounts Officer – Finances, not involved directly with waste recycling	1 - Y81 2 - Y82 3 - Y83	0.0 0.0 0.0	0.32 0.31 0.28	<lod <lod <lod< td=""><td></td><td></td></lod<></lod </lod 		

Table S8Summary of data on daily exposure of participants classified by (self-reported) occupation in e-waste facility.