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S1. Photocatalytic experimental set-up

Figure S1. (a) Photograph and (b) schematic image of the batch photocatalytic reaction set-up for 

the reduction of selenium oxyanions in synthetic and real industrial FGDW.
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S2. Noble metal deposited TiO2

Figure S2. Photograph presenting the various colours of the final noble metal deposited TiO2 

photocatalysts. From left to right: TiO2, Ag-TiO2, Au-TiO2, Pt-TiO2 and Pd-TiO2.
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Figure S3. (a) Photocatalytic reduction of 5 mg/L (as Se) sodium selenate in MilliQ over varying 

concentrations of silver deposited on TiO2 and (b) Photocatalytic reduction of 5 mg/L (as Se) 

sodium selenate in MilliQ over calcined and uncalcined samples of 1 wt% Ag-TiO2.
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Figure S4. High resolution transmission electron microscopy (HR-TEM) with electron energy 

loss spectroscopy (EELS) for three separate locations on the TEM grid prepared with Se 

deposited onto TiO2 after 1.0 photons  cm-2 of UV exposure. (a-d, e-h, i-l) HR-TEM, × 1019

EELS O imaging, EELS Ti Imaging, EELS Se imaging, for location 1, 2 and 3 respectively and 

(m-o) EELS line scans for location 1, 2 and 3 respectively.
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S3. O2
•¯ / •HO2 Radical Experiments

Experiments were conducted to reveal the variations in hydroperoxyl generation rate with the 

varying noble metal deposited TiO2 samples. Dihydroethidium (DHE) at a concentration of 5×10-5 

M was used to quantitatively detect superoxide (and consequently hydroperoxyl) radical (O2
•¯ / 

•HO2) generated by the TiO2 photoreduction system. Unless otherwise stated, a 0.08 M DHE stock 

solution in DMSO was used and stored in the dark at –20°C for at most 2 days.  Superoxide 

concentrations were indirectly determined by monitoring the increase in fluorescence intensity at 

580 nm (ex. 480 nm), attributed to the formation of the superoxide-specific product 2-

hydroxyethidium, at set time intervals [1–4]. When superoxide dismutase (SOD) was used, it was 

added prior to the dark adsorption period and the aforementioned DHE procedure was conducted 

without further modifications. Fluorescence spectra were recorded on a Photon Technology 

International QM-4SE fluorimeter and were smoothed using Origin Pro by removing Fourier 

components with frequencies higher than a particular cut-off frequency prior to integration of the 

area under the emission peak. A calibration curve for 2-hydroxyethidium was generated by 

reacting known amounts of DHE with potassium nitrosodisulfonate (Fremy’s Salt), which has been 

demonstrated to yield the same superoxide-specific oxidation product [5,6]. The previously 

mentioned procedure for photoreduction experiments was adapted for this probe molecule, with 

DHE replacing selenium. Contrary to previous investigations where DHE was added immediately 

after stopping illumination [7], it was necessary to have DHE present during illumination because 

the half-life of superoxide and disproportionation of hydroperoxyl are significantly lower at low 

pH compared to alkaline conditions [8].
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