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Appendix S1

Electron paramagnetic resonance (EPR) and reactive oxygen species (ROS)
capture test:

The occurrence of radical species such as SO, ~ and ‘OH was examined with an
electron paramagnetic resonance (EPR) spectroscopy (A300, Bruker Co.) using 10
mM 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin-trapping agent. TMP was
used to mark 'O, which would oxidize TMP into 2,2,6,6-tetramethyl-4-piperidinol-N-
oxyl radical (TMPN). The sample was placed in a quartz flat cell and analyzed under
the following conditions: microwave frequency = 9.64 GHz, microwave power =

0.94mW, modulation frequency = 100 kHz, and modulation amplitude = 2.0 G.
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Appendix S2

Characterization Analysis Section:

The morphology of catalyst was characterized via a high resolution transmission
electron microscopy (FEI Tecnai G2 F20 S-TWIN) at 200 kV and a field-emission
scanning electron microscope (FE-SEM, Hitachi, SU8010) at 5 kV. The X-ray
diffraction (XRD) patterns were obtained to analysis the crystal structure of the
samples on a X'Pert PRO MPD X-ray instrument using Cu-Ka radiation (A=0.15406
nm) with at a scanning rate of 10° per minute. The surface chemical compositions and
states of the catalysts were measured by Raman spectra (LabRam-1B French Dilor
Com, Aex = 532 nm), and X-ray photoelectron spectroscopy (XPS, Thermo Escalab
250, Al-Ka X-rays). Zeta potential of the aqueous-suspended samples were measured
using Zetasizer Nano ZS (Malvern). An inductive coupled plasma (ICP) emission
spectrometer (PerkinElmer 8300) was used to determine concentration of metal ion in
solution. LC-MS (Thermo, LCQ FLEET) operating in a positive mode. The scan

range was from 100 m/z (mass to charge ratio) to 500 m/z.

Appendix S3

Theoretical calculations:

The Fukui functions and were performed at the B3LYP/6-31G(d) level using the
Gaussian 09 program. The structural geometry optimization was used to confirm a
true energy minimum on the potential energy surface. The models of carbon
nanotubes (CNTs) and various nitrogen doped (pyridinic N, pyrrolic N, and graphitic
N) CNTs were constructed via TubeGen 3.4[1] and GaussView 5.0. The dangling
bonds of the tip atoms of the CNTs were terminated with H atoms to obtain a neutral
cluster. All calculations were performed with the Gaussian 09 program. The
B3LYP/6-31G(d) method was used to optimize the models where the water was set
for the solvation effect. The ESP distributions were constructed with GaussView 5.0
on the basis of the B3LYP/6-31G(d)-optimized results. Due to the size and edge
effects, the properties estimated with the finite-size model may vary from those of the
real system to some extent. However, it can be expected that the results obtained with

the current model would be qualitatively reliable in predicting the local chemical



properties[2].
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Figure S1. XRD patterns of the Fe@NC, Zn@NC and various FeZn@NC.
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Figure S2. SEM image of FeZn@NC(1/10).
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Figure S3. Fe 2p XPS spectra of (a) Fe@NC and (c¢) FeZn@NC, Zn 2p XPS spectra
of (b) Zn@NC and (d)FeZn@NC.

Figure S4. The proposed interaction between bimetal species.
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Figure S5. Pseudo-first-order kinetic models for SMX degradation by various
FeZn@NC, Zn@NC and Fe@NC ([PS];=1 mM, [SMX]y=5 mg/L, catalyst
dosage=0.1 g L™").
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Figure S6. SMX degradation by Mn@NC, Fe@NC, Co@NC, Ni@NC, Cu@NC
and Zn@NC. (a) degradation kinetics curves; (b) Pseudo-first-order kinetic models
([PS]o=1 mM, [SMX]o=5 mg/L, catalyst dosage=0.1 g L!).
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Figure S7. SMX degradation by FeMn@NC, FeCo@NC, FeNi@NC, FeCu@NC
and FeZn@NC. (a) degradation kinetics curves; (b) Pseudo-first-order kinetic models
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Figure S8. SMX degradation by Fe?" and FeZn@NC. (a) degradation kinetics
curves; (b) Pseudo-first-order kinetic models ([PS]y=1 mM, [SMX],=5 mg/L, catalyst
dosage=0.1 g L ™).
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Figure S9. Pseudo-first-order kinetic models for SMX degradation by FeZn@NC
in various pH. ([PS];=1 mM, [SMX],=5 mg/L, catalyst dosage=0.1 g L1).



Figure S10. Simulated structure of (a) pristine carbon nanotube, (b) pyridinic N
doped carbon nanotube, (c) graphitic N doped carbon nanotube and (d) pyrrolic N

doped carbon nanotube.

Figure S11. ESP of the persulfate molecule.
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Figure S12. LC-MS spectra of the intermediates of SMX in the FeZn@NC PS system

at different time intervals: (a) 0 min, (b) 2 min, (¢) Smin, (d) 30 min, (¢) 90 min.



Figure S13. Isosurface map of the dual descriptor. The isovalue is 0.004. Purple and
green surfaces correspond to positive and negative regions, respectively.
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Figure S14. Comparation of high resolution XPS spectra of (a) fresh FeZn@NC and
(b) FeZn@NC after three catalytic runs.
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Figure S15. High resolution XPS spectra of the S region of the FeZn@NC.
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Figure S16. High-resolution Fe2p (a-c) and Zn2p (d-f) XPS spectrum of FeZn@NC,
FeZn@NC after three runs and FeZn@NC regenerated by heating.

Table S1 the amount of raw material of serial ZnFe@NC

Denomination

Amount of raw materials

7ZnCl, FeCl;-6H,0 Melamine
Fe@NC - 19.88 g 10.00 g
FeZn@NC(10/1) 18.00 g 1.00 g 10.00 g
FeZn@NC(5/1) 16.67 g 1.67 g 10.00 g
FeZn@NC(1/1) 10.02 g 19.88 g 10.00 g
FeZn@NC(1/5) 833 ¢g 333 ¢ 10.00 g
FeZn@NC(1/10) 9.09 g 1.81g 10.00 g
Zn@NC 10.02 g - 10.00 g

Table S2 the adsorption energies (AE,4) between PS and various N doped NCNTs

Type of carbon nanotubes AE, 4 (eV)
pristine CNTs -0.194
pyridinic N -0.910
graphitic N -0.025
pyrrolic N -0.295
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