Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information (ESI)

Magnetic In-Pd Catalysts for Nitrate Degradation

Sujin Guo^{1,2}, Camilah D. Powell^{2,3}, Dino Villagran^{2,4} and Michael S. Wong^{1,2,3,5,6}*

¹Department of Civil & Environmental Engineering, Rice University, 6100 Main Street, Houston, TX 77005, ²Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, ³Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX 77005, ⁴Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, ⁵Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, ⁶Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX 77005

*To Whom Correspondence Should Be Addressed E-mail: mswong@rice.edu

Table S1 NEWT general test water (fresh) – for drinking water

General Paramaters	Specification		
Water Source	De-ionized water (conductivity < 1 μ S/cm)		
pH adjusted with HCl	7.5±0.25		
Temperature	20±2.5 °C		
Constituents	Concentration (mg/L)	Concentration (mM)	
Bicarbonate (HCO ₃ -)	183	3.0	
Chloride (Cl ⁻)	71	2.0	
Sulfate (SO ₄ ² -)	48	0.50	
Silicate (SiO ₂ ²⁻)	21.4	0.33	
Nitrate (NO ₃ -)	8.9 (2.0 as N)	0.14	
Phosphate (PO ₄ ³⁻)	0.12 (0.04 as P)	0.0013	
Fluoride (F-)	1.0	0.053	
Calcium (Ca ²⁺)	40	1.0	
Magnesium (Mg ²⁺)	12	0.50	
Sodium (Na ⁺)	89	3.86	
Total dissolved solids (TDS)	478	-	
Ionic strength	-	8.5	

Table S2 Magnetic properties of nFe₃O₄, nFe₃O₄@SiO₂ and Pd-In/nFe₃O₄@SiO₂

Compound	Magnetic Saturation Ms (emu/g)	Magnetic Remanence Mr (emu/g)	Magnetic Remanance/Magnetic Saturation	Coercivity (kOe)
nFe ₃ O ₄	77.1	7.0	0.091	0.06
nFe ₃ O ₄ @SiO ₂	56.0	4.5	0.080	0.07
Pd-In/nFe ₃ O ₄ @SiO ₂	29.5	2.5	0.085	0.18

Fig. S1 (a) TEM image of Pd-In/Al $_2$ O $_3$ catalyst (scale bar = 50 nm) and (b) Pd particle size distribution the Pd-In/Al $_2$ O $_3$ catalyst

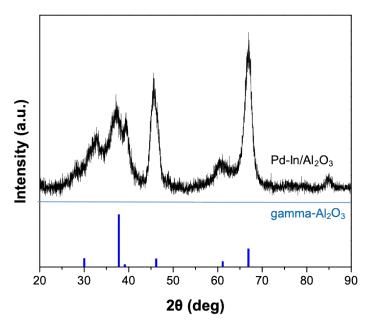


Fig. S2 XRD spectrum of Pd-In/Al₂O₃ sample.

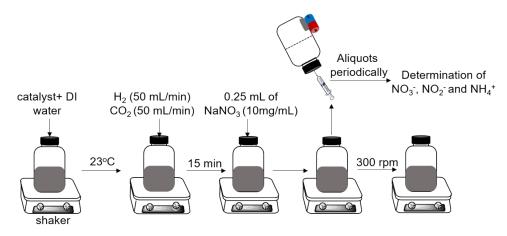
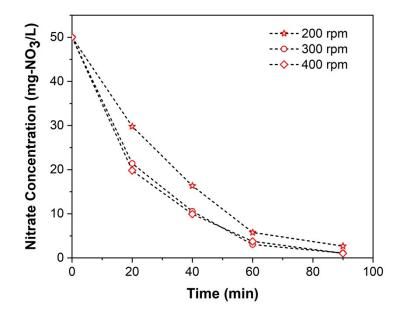



Fig. S3 Schematic of the experimental setup

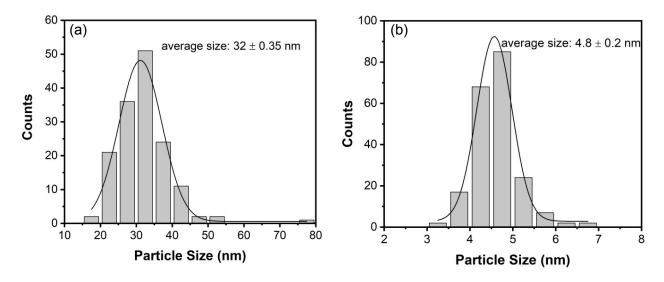
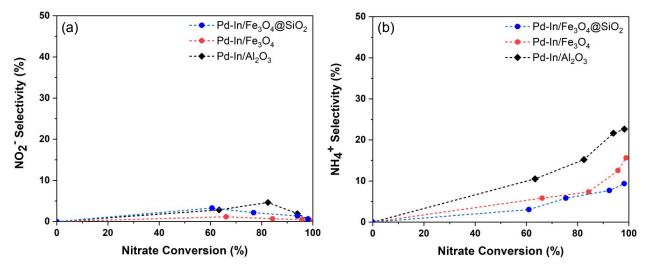
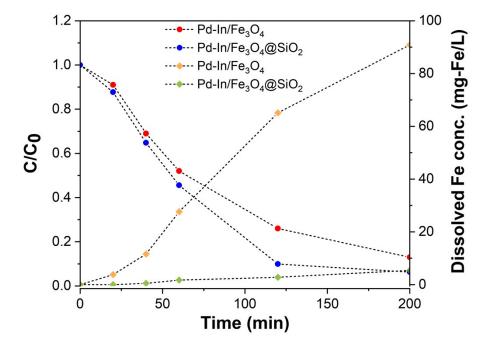


Fig. S4 Changing shaking speed to check the external mass transfer. Reaction conditions: 1 g/L catalyst loading, 200, 300 and 400 rpm string rate, 1 atm pressure, DI water containing nitrate.


The Weisz–Prater parameter (C_{WP}) was used to evaluate internal mass transfer limitations, as described in the following formula:

$$C_{WP} = \frac{R^2 k_{obs} \tau}{D\theta}$$


where $k_{\rm obs}$ is the observed pseudo-first-order rate constant for nitrate reduction (0.0616 s⁻¹) from Fig. 3, R is the catalyst's radius, τ is the tortuosity factor of the catalyst (typically varies from 2 to 10), θ is the porosity of the catalyst (typically varies from 0.2 to 0.7), and D is the diffusion coefficient of nitrate in water (1.7 × 10⁻⁸ m² s⁻¹). The reaction is significantly limited by internal mass transfer while $C_{\rm WP}$ is much greater than 1, while is negligible when $C_{\rm WP}$ is much less than 1. If we choose the smallest θ value (0.2), largest τ value (10) and R value (1 μ m) to estimate the maximum value of $C_{\rm WP}$. The calculated maximum $C_{\rm WP}$ was 3.6 × 10⁻⁶, much less than 1. Thus, internal mass transfer limitations are also negligible for our Pd-In/Fe₃O₄ catalyst in the nitrate reduction. For the SiO₂ coated catalyst, the surface radius is supposed to be larger than Pd-In/Fe₃O₄ and θ will be smaller, while the estimated $C_{\rm WP}$ was still smaller than 1.

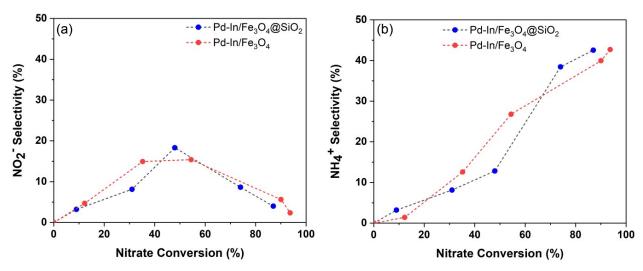

Fig. S5 Particle size distribution of (a) nFe₃O₄ and (b) Pd-In NPs of Pd-In/nFe₃O₄@SiO₂ catalyst material.

Fig. S6 Selectivity of the Pd-In/nFe₃O₄@SiO₂, Pd-In/nFe₃O₄ and Pd-In/Al₂O₃ catalysts to nitrite and ammonium as a function of nitrate conversion in DI water. (a) S NO₂-, (b) S NH₄⁺. Reaction conditions: 1 g/L catalyst loading, 300 rpm string rate, 1 atm pressure, DI water containing nitrate.

Fig. S7 Nitrate reduction kinetics in SDW for Pd-In/nFe₃O₄ (red) and Pd-In/nFe₃O₄@SiO₂ (blue), and the corresponding iron leaching concentration during the first cycle. Reaction conditions: 1 g/L catalyst loading, 300 rpm string rate, 1 atm pressure, SDW containing nitrate (~50 ppm).

Fig. S8 Selectivity of the Pd-In/nFe₃O₄@SiO₂ and Pd-In/nFe₃O₄ catalysts to nitrite and ammonium as a function of nitrate conversion in SDW. (a) S NO₂-, (b) S NH₄⁺. Reaction conditions: 1 g/L catalyst loading, 300 rpm string rate, 1 atm pressure, DI water containing nitrate.