Supporting Information

Efficient Extraction of Slow-releasing Cr(VI) from Nanosized Ion Channels in Cr(VI)–Ettringite from Reduced Chromite Ore Processing Residue

Weizhen Liu,^{a§} Yao Song,^{a§} Jing Li,^a Lan Ling,^b Chen Tian,^a Xueming Liu,^a Zhang Lin*^a

^a School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou 510006, China

^b State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China

* Corresponding author: Tel: 86-020-39380503; E-mail: zlin@scut.edu.cn

[§] These authors contributed equally to this work.

	Cr	Са	Mg	Al	Fe	Na	S	Ref.
rCOPR	8.9	39.2	24.8	5.9	13.5	0.075	2.0	this work
Lime-based COPR-1	1.8	23.7	13.8	4.4	5.1	2.2	1.1	[1]
Lime-based COPR-2	2.33	20.6	4.6	5.5	12.5	\	\	[2]

Table S1. The content of main elements in the pristine rCOPR was tested by XRF.

Figure S1. XRD pattern of the pristine rCOPR.[3] Ettringite: $Ca_6Al_2(SO_4)_3(OH)_{12} \cdot 26H_2O$ (pdf:00-041-1451) Hydrotalcite: $Mg_6Al_2CO_3(OH)_{16} \cdot 4H_2O$ (pdf:01-087-1138) Brownmillerite: Ca_2FeAlO_5 (pdf:01-070-2764) Portlandite: $Ca(OH)_2$ (pdf:01-084-1264) Brucite: $Mg(OH)_2$ (pdf:01-084-2164) Calcite: $CaCO_3$ (pdf:01-072-1651)

Figure S2. Cr *K*-edge XAFS spectra of the samples and reference compounds. Sample 1, 2, 3 refer to the pristine COPR, the treated COPR by using 1M NaHCO₃ under room temperature, and the treated COPR by using 1 M NaHCO₃ under hydrothermal conditions, respectively.

Figure S3. a) XRD pattern of the treated COPR with different hydrothermal temperature from $30-150 \degree C$ (1 M NaHCO₃, hydrothermal time = 3 h.)

Figure S4. SEM images of CaCO₃ in treated COPR with 1M NaHCO₃: a) without hydrothermal treatment. b) with hydrothermal treatment at 120 °C for 3 h.

Table S2. The pH of solution	n as a function of NaHCO ₃	concentration.
------------------------------	---------------------------------------	----------------

NaHCO ₃ concentration (mol/L)	0.05	0.1	0.2	0.5	1	2
pH	12.09	12.47	10.60	10.09	9.89	9.74

Hydrothermal temperature (°C)	30	60	90	120	150
pH	9.89	9.64	9.55	9.61	9.78
Hydrothermal time (h)	0.5	1	2	3	4
pH	9.46	9.49	9.53	9.61	9.82

Table S3. The pH of the solution as a function of hydrothermal temperature and hydrothermal time.

References

- X. Wang, J. Zhang, L. Wang, J. Chen, H. Hou and J. Yang, Long-term stability of FeSO₄ and H₂SO₄ treated chromite ore processing residue (COPR): Importance of H⁺ and SO₄²⁻. *J. Hazard Mater*, 2017, **321**, 720-727.
- [2] M. Chrysochoou, S. C. Fakra, M. A. Marcus, D. H. Moon and D. Dermatas, Microstructural Analyses of Cr(VI) Speciation in Chromite Ore Processing Residue (COPR). *Environ Sci Technol*, 2009, **43**, 5461-5466.
- [3] Y. Song, J. Li, M. Peng, Z. Deng, J. Yang and W. Liu, Identification of Cr(VI) speciation in ferrous sulfate-reduced chromite ore processing residue (rCOPR) and impacts of environmental factors erosion on Cr(VI) leaching. *J. Hazard Mater*, 2019, **373**, 389-396.