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Experimental Section. 

Membrane Preparation. A 6FDA-TrMPD dense film was prepared through solvent evaporation from (3 

wt/vol%) its polymer solution in chloroform. The solution was filtered through 0.45 μm PTFE filter and 

poured onto a flat glass Petri dish. The solvent was evaporated slowly at RT over 24 h. Thereafter, the 

obtained film was further dried at 120 °C for 24 h under vacuum. The resulting robust film with a thickness 

of ~ 40 μm was used for tensile measurement and for BET surface area analysis. 

Characterization. The infrared spectrum was recorded for polyimide powder using a Varian 670-IR FT-

IR spectrometer. 

 

Table S1. The characteristics of the 6FDA-TrMPD polyimide. Weight (Mw) and number (Mn) average 

molecular weights, polydispersity index (PDI), degradation temperature Td,5%, and surface area (SBET). 

 

 

Polymer 

Mw  

(g mol-1) 

Mn  

(g mol-1) 

PDI  

(-) 

Td, 5%  

(°C) 

SBET 

(m2 g-1) 

6FDA-TrMPD 176,606 110,987 1.59 509 450 ±15 
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Fig. S1. 1H NMR spectrum of the 6FDA-TrMPD in DMSO-d6. 

 

 

Fig. S2. Attenuated total reflectance Fourier-transform infrared spectrum (ATR-FTIR) spectrum of the 

6FDA-TrMPD. 
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Fig. S3. TGA thermograms of the 6FDA-TrMPD (a) powder and (b) electrospun mat. 

 

 

Fig. S4. The use of the electrospun mat for water-oil separation. (a) Before, and (b-d) during the separation 

process. 
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Fig. S5. Stress-strain curves of the free standing film made truly from the 6FDA-TrMPD powder (a) and 

its electrospun mat (b). 

 

 

Fig. S6. Contact angle measurements of the fiber mat using various oils. The mat imbibed oil droplets 

immediately upon contact with the droplet (i.e. oil contact angle (OCA) < 1o), demonstrating 

superoleophilicity. 
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Fig. S7. The influence of the applied voltage on the morphology of the 6FDA-TrMPD nanofibers. c6FDA-TrMPD= 10% 

(w/v). The tip-to-collector distance kept at 15 cm and the flow rate set to 0.5 mL/h. Insets show the statistical 

distribution for the diameter of the respective nanofibers.  

 

Fig. S8. The influence of the flow rate on the morphology of the 6FDA-TrMPD nanofibers. c6FDA-TrMPD= 10% (w/v). 

The applied voltage was 20 kV and the tip-to-collector distance kept at 15 cm. Insets show the statistical distribution 

for the diameter of the respective nanofibers. 
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Fig. S9. Scanning electron micrographs of the 6FDA-TrMPD nanofibers exposed to various solvents for 24 h. c6FDA-

TrMPD= 10% (w/v). (a) Control sample without any solvent treatment, (b) water, (c) ethanol (EtOH), (d) hexane, and 

(e) acetonitrile (ACN). 

 

 

Fig. S10. Scanning electron micrographs of the electrospun mats exposed to toluene (a-c) and m-xylene (d-

e) for 24 h. Insets show the statistical distribution for the diameter of the respective nanofibers. 
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 Table S2. Oil sorption performance of various polymeric adsorbents.  

Sorbent 
Material 

form 

BET surface 

area (m2 g-1) 
Sorbate 

Sorption 

capacity (g g-1) 
Ref. 

Intrinsically porous 

fluorinated 

polyimides 

Fibrous mat 560 

Crude oil 34.6  

This study Diesel 55.76 

Gasoline 31.25 

A porous  

superhydrophobic  

SiO2@polystyrene 

Foam n.d. Crude oil 32.1 1 

Bio-based oil 

gelling agent 
Powder n.d. Crude oil 4.7 2 

SiO2 decorated 

cotton fibers 
Fibers n.d. 

Crude oil 57.0 
3 

Diesel 25.61 

Porous PS fibers Fibers n.d. Diesel 7.13 4 

Carbon shoot 

sponge 
Sponge 440 Crude oil ~30 5 

Cellulose-based 

aerogels 
Aerogel n.d. Crude oils 18.4-20.5 6 

Graphene sponge Sponge n.d. Crude oil 85-90 7 

CNF/carbon foam 

 
Foam n.d. 

Diesel 21 
8 

Gasoline 16 

Lignin-based 

polyurethane/graphe

ne oxide foam  

Foam n.d. Crude oil 25.4 9 

Poly(dimethylsiloxa

ne)-TiO2 coated 

polyurethane sponge 

Sponge n.d. Diesel 14.2 10 

n.d.: Not determined 
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