Supporting Information

Silica Nanoparticles Alleviate Mercury Toxicity via Immobilization and Inactivation of Hg(II) in Soybean (*Glycine max*)

Author: Yunyun Li^{1,2}, Nali Zhu³, Xujun Liang⁴, Xu bai², Lirong Zheng², Jiating Zhao^{2,*}, Yu-feng Li², Zhiyong Zhang², Yuxi Gao²

¹College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China ²CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ³Laboratory of Proteomics, Protein Science Core Facility Center, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China ⁴Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China

*Corresponding author: Jiating Zhao E-mail: zhaojt@ihep.ac.cn; Tel: +86-10-88233212

Figure S1 Chlorophyll content in leaf (A for 30 nm, B for 50 nm) under different treatment group. Different capital letters above the columns indicate significant differences between the different levels of nano-SiO₂ treatment under the same Hg exposurelevel (p<0.05). Different lowercase letters above the columns indicate significant differences between different levels of Hg exposureunder the same nano-SiO₂ treatment (p<0.05). Error bars are standard deviations of the means (n=3).

Figure S2 Root SOD acvitly (A for 30 nm, B for 50 nm) under different treatment group. Different capital letters above the columns indicate significant differences between the different levels of nano-SiO₂ treatment under the same Hg exposure level (p<0.05). Different lowercase letters above the columns indicate significant differences between different levels of Hg exposureunder the same nano-SiO₂ treatment (p<0.05). Error bars are standard deviations of the means (n=3).

	NP SiO ₂ levels		Hg exposure levels			
			0	1 mg/L	5 mg/L	
	30 nm	0	Control	Hg1	Hg5	
		100 mg/L	30NP-100	Hg1-30NP-100	Hg5-30NP-100	
		500 mg/L	30NP-500	Hg1-30NP-500	Hg5-30NP-500	
Nama SiO		1000 mg/L	30NP-1000	Hg1-30NP-1000	Hg5-30NP-1000	
Nalio-510 ₂		2000 mg/L	30NP-2000	Hg1-30NP-2000	Hg5-30NP-2000	
	50 nm	0	Control	Hg1	Hg5	
		100 mg/L	50NP-100	Hg1-50NP-100	Hg5-50NP-100	
		500 mg/L	50NP-500	Hg1-50NP-500	Hg5-50NP-500	
		1000 mg/L	50NP-1000	Hg1-50NP-1000	Hg5-50NP-1000	
		2000 mg/L	50NP-2000	Hg1-50NP-2000	Hg5-50NP-2000	

Table S1 Treatments of experiment

ICP-MS Conditions				
Mode	standard mode			
Nebulizer	Glass concentric			
RF power (W)	1300			
Plasma gas flow (L/min)	13.0			
Auxiliary gas flow (L/min)	0.80			
Nebulizer gas flow (L/min)	0.72			
Collision gas	7.28% (V/V) H ₂ in He			
Collision gas flow (mL/min)	5.6			
Dwell time (ms)	100			
Monitored ion	²⁰² Hg			

Table S2The working conditions of ICP-MS