	Stock s	olution	Half-strength		
KNO ₃	101.1	g 1 ⁻¹	303.0	mg l ⁻¹	
$Ca(NO_3)_2 \cdot 4H_2O$	236.2	g l ⁻¹	472.0	mg l^{-1}	
$NH_4H_2PO_4$	115.1	g l ⁻¹	115.0	mg l ⁻¹	
MgSO ₄ ·7H ₂ O	246.5	g l ⁻¹	123.0	mg l ⁻¹	
NaFeEDTA (13.7-18.7% Fe)	30.00	g l ⁻¹	15.00	mg l ⁻¹	
KCl	1.864	g l ⁻¹	1.864	mg l ⁻¹	
H ₃ BO ₃	0.773	g l ⁻¹	773.0	μg l ⁻¹	
MnSO ₄ ·H ₂ O	0.169	g l ⁻¹	169.0	$\mu g l^{-1}$	
$H_2SO_4 (98\%)$	54.00	μ1 1 ⁻¹	54.00	$\mu l m l^{-1}$	
$CuSO_4 \cdot 5H_2O$	62.00	$mg l^{-1}$	62.00	µg l⁻¹	
H ₂ MoO ₄ (85% MoO ₃)	40.00	mg l ⁻¹	40.00	$\mu g l^{-1}$	
pН			5.86		
EC (µS)			1243		

Supplementary Table 1. Composition of the nutrient solution.

Modified from⁷².

1

Supplementary Table 2. Conductivity and pH of nutrient solutions.

$[ZnO] (mg l^{-1})$								Source					
	No plant	0	0.1	1	10	100	1000	χ^2	Bulk	NP100	NP50	NW	χ²
pН													
8 weeks	4.2±0.1	5.8 ± 0.2^{ab}	5.6 ± 0.1^{a}	5.6 ± 0.2^{ab}	5.8 ± 0.1^{ab}	6.2±0.1 ^b	$6.8 \pm 0.1^{\circ}$	38.9***	5.9±0.1 ^{ab}	6.3±0.1 ^b	5.9 ± 0.2^{ab}	5.6 ± 0.2^{a}	9.5*
12 weeks	5.5±0.4	8.1±0.1 ^c	7.6 ± 0.1^{ab}	7.6±0.1 ^{ab}	7.5 ± 0.05^{a}	7.9±0.1 ^{bc}	8.2±0.1 ^c	28.2***	7.9±0.1	7.9±0.1	7.8±0.1	7.7±0.1	3.1
EC (µS)		43.2±0.2 ^{ab}	44.0±0.1 ^b	42.9±0.2 ^a	43.4±0.8 ^{ab}	41.8±1 ^a	42.5±0.6 ^a	14.5*	5.9±0.2 ^a	6.3±0.8 ^{ab}	5.9±1 ^a	5.6±0.6 ^a	3.1

3 Plants were grown in four different ZnO sources: micron-size (Bulk), nanoparticles < 100 nm (NP100), nanoparticles < 50 nm (NP50), and nanowires of 50

4 nm diameter (NW). Each source was provided at six concentrations $(0, 0.1, 1, 10, 100, \text{ and } 1000 \text{ mg } l^{-1})$ except NW (only up to 10 mg l^{-1}). Data represent

5 means \pm SE, where n = 4 and df= 5 for the ZnO concentration factor and df = 3 for the source factor. Concentration data are expressed in mg l⁻¹ for the growth

6 solutions and in µg g⁻¹ for plant samples. Different letters indicate statistically significant groups according to Dunn's test with Benjamini-Hochberg

7 correction. The Chi-square value (χ^2) corresponds to the Kruskal-Wallis rank-sum test and is indicated as significant at P < 0.05 (*), P < 0.01 (**), or P < 0.01

8 0.001(***).

Extraction [V]:	-2000
Focus [V]:	-666.3
SourceQuad1 [V]:	248.7
Rot-Quad1 [V]:	0
Foc-Quad1 [V]:	-17.6
Rot-Quad2 [V]:	29.5
Source Offset [V]:	-6
Matsuda Plate [V]:	17.5
Cool Gas [l/min]:	15.1
Aux Gas [l/min]:	0.9
Sample Gas [l/min]:	1
Add Gas [l/min]:	0
Org Gas [l/min]:	0
Operation Power [W]:	1308
X-Pos [mm]:	2.5
Y-Pos [mm]:	1.5
Z-Pos [mm]:	2.9
AmplTemp [°C]:	47.23
Fore Vacuum [mbar]:	4.17E-04
High Vacuum [mbar]:	3.91E-07
Ion Getter-Press [mbar]:	2.48E-08

Supplementary Table 3. Neptune multicollector typical operational settings.

	Source									
	Bulk	NP100	NP50	NW						
$[Al] \mu g g^{-1}$	0.6±0.3	0.9±0.3	22400±2500	6.2±1.9						
[Cd] µg g ⁻¹	1.2±0.5	0.9 ± 0.4	1.1±0.1	0.0 ± 0.0						
$[Cr] \mu g g^{-1}$	0.1±0.0	0.1±0.0	0.3±0.0	0.7 ± 0.1						
[Cu] µg g ⁻¹	4.5±1.7	3.1±1.4	3.2±0.5	0.4 ± 0.0						
[Fe] µg g ⁻¹	1.3±0.3	0.9 ± 0.4	8.4±1.0	8.5±1.1						
[Ni] µg g ⁻¹	0.1±0.0	0.1±0.0	0.5±0.1	3.4±0.3						
[Pb] µg g ⁻¹	3.7±1.4	2.7±1.2	27.2±3.9	0.2±0.0						
$[Zn] mg g^{-1}$	756.8±7.2	773.9±1.6	724.9±15.2	759.6±15.1						

Supplementary Table 4. Elemental composition of ZnO materials.

13 ZnO materials were: micron-size (Bulk), nanoparticles < 100 nm (NP100), nanoparticles < 50 nm (NP50), and nanowires of 50 nm diameter (NW). Data

14 represent means \pm SE, n =3. Data are expressed in mg g⁻¹ for Zn and in μ g g⁻¹ for the rest of the elements.

Supplementary Table 5. Zinc and aluminium concentrations in solutions and plants.

			[Zı	$nO] (mg l^{-1})$			Sou	ırce		_		
	0	0.1	1	10	100	1000	χ^2	Bulk	NP100	NP50	NW	χ^2
[Zn]												
solution	0.73 ± 0.02^{a}	0.92 ± 0.03^{ab}	1.12 ± 0.05^{b}	$2.71\pm0.17^{\circ}$	5.01 ± 0.6^{cd}	14.76 ± 1.8^{d}	84.6***	3.53±1.0	3.57±0.8	5.92±1.5	1.31±0.2	6.6
root	33.1 ± 3.0^{a}	50.7 ± 3.4^{ab}	150 ± 14.0^{b}	1537±133 ^{bc}	3705±581 ^{cd}	7630 ± 932^{d}	86.3***	1869±555	1799±537	3073±791	376±125	6.7
shoot	31.5 ± 3.6^{a}	48.5 ± 4.4^{a}	143±15 ^b	601±46 ^c	868±89 ^c	1880±370 ^c	82.6***	467±94	512±123	821±252	211±69	4.1
[A1]												
solution	0.14 ± 0.01^{bc}	$0.17 \pm 0.01^{\circ}$	$0.15 \pm 0.01^{\circ}$	0.11 ± 0.02^{ab}	0.07 ± 0.01^{a}	0.10 ± 0.01^{a}	39.0***	0.13±0.01	0.13±0.01	0.12±0.01	0.14±0.01	3.0
root	31.4 ± 3.5^{a}	23.8±3.1 ^a	39.4 ± 4.7^{ab}	32.9 ± 4.9^{a}	32.0 ± 5.3^{a}	110.4 ± 28.6^{b}	19.2**	35.1±4.2 ^{ab}	36.2 ± 8.9^{a}	67.4±15 ^b	28.6±3.1 ^a	9.6*
shoot	19.7±3.4 ^{ab}	14.7 ± 1.6^{a}	15.4 ± 1.6^{a}	$25.4\pm2.1^{\circ}$	21.9 ± 2.7^{abc}	26.1 ± 3.5^{bc}	25.1***	22.2±2.5	16.3±1.4	21.6±2.4	20.8±2.3	5.0
[Al]/[Zn]												
solution	0.19 ± 0.01^{d}	0.19 ± 0.01^{cd}	$0.14 \pm 0.01^{\circ}$	0.044 ± 0.006^{b}	0.017 ± 0.003^{ab}	0.009 ± 0.002^{a}	80.6***	0.1±0.01	0.1±0.02	0.09±0.02	0.14±0.01	4.4
root	0.66 ± 0.06^{e}	0.32 ± 0.04^{de}	0.14 ± 0.03^{cd}	0.046 ± 0.005^{bc}	0.026 ± 0.003^{ab}	0.016 ± 0.002^{a}	81.6***	0.23±0.06	0.19±0.05	0.17±0.04	0.33±0.06	6.9
shoot	$1.0\pm0.1^{\circ}$	0.46 ± 0.04^{bc}	0.31 ± 0.05^{b}	0.022±0.003 ^a	0.0090±0.0008 ^a	0.015±0.004 ^a	81.6***	0.32±0.08	0.26±0.06	0.32±0.1	0.44±0.09	4.6

Plants were grown in four different ZnO sources: micron-size (Bulk), nanoparticles < 100 nm (NP100), nanoparticles < 50 nm (NP50), and nanowires of 50 nm diameter (NW). Each source was provided at six concentrations (0, 0.1, 1, 10, 100, and 1000 mg l⁻¹) except NW (only up to 10 mg l⁻¹). Data represent means ±SE, where n = 4 and df= 5 for the ZnO concentration factor and df = 3 for the source factor. Concentration data are expressed in mg l⁻¹ for the growth solutions and in μ g g⁻¹ for plant samples. Different letters indicate statistically significant groups according to Dunn's test with Benjamini-Hochberg

- 27 correction. The Chi-square value (χ^2) corresponds to the Kruskal-Wallis rank-sum test and is indicated as significant at P < 0.05 (*), P < 0.01 (**), or P < 0.01
- 28 0.001(***).

29 Supplementary Table 6. δ^{66} Zn_{JMC} of plant tissues and ZnO sources.

	Control	Bulk	NP100	NP50	NW	test	value
$\delta^{^{66}}$ Zn _{shoot} (‰)	0.27±0.01 ^b	-0.61±0.05ª	-0.50±0.06 ^{ab}	-0.44±0.08 ^{ab}	-0.32±0.02 ^{ab}	KW	11.0*
δ ⁶⁶ Zn _{root} (‰)	0.35±0.05 ^b	0.04±0.06 ^a	0.02±0.07 ^a	0.13±0.04 ^{ab}	0.38 ± 0.01^{b}	AOV	9.1**
δ ⁶⁶ Zn _{znO} (‰)		0.35±0.01 ^a	0.34±0.00 ^a	0.31±0.01 ^a	0.31 ^a	КW	6.7

Plants were grown in four different ZnO sources: micron-size (Bulk), nanoparticles < 100 nm (NP100), nanoparticles < 50 nm (NP50), and nanowires of 50 nm diameter (NW). Each source was provided at 100 mg l^{-1} except NW (10 mg l^{-1}). Data represent means ±SE, where n =3 and df= 4. Different letters indicate statistically significant groups according to either paired-t-tests with Bonferroni correction (ANOVA, AOV) or Dunn's test with Benjamini-Hochberg correction (Kruskal-Wallis, KW). The F-value (AOV) or Chi-square value (KW) is indicated as significant at P < 0.05 (*), P < 0.01 (**), or P < 0.001(***).

			[ZnO] (r	ng l ⁻¹)						Sou	rce			
	0	0.1	1	10	100	1000	test	value	Bulk	NP100	NP50	NW	test	value
Fw_{plant}	56.8 ± 8.2^{d}	53.4 ± 9.7^{d}	34.4 ± 5.0^{cd}	26.9±3.1 ^{bc}	18.7 ± 2.4^{ab}	15.0±0.9 ^a	KW	37.3***	27.1±3.8	41.8±6.5	38.2±7.5	36.0±4.0	KW	5.3
FW _{root}	$36.4 \pm 4.5^{\circ}$	34.9 ± 5.6^{bc}	25.5 ± 3.6^{bc}	20.4 ± 2.1^{ab}	14.7 ± 1.8^{a}	12.5 ± 0.7^{a}	KW	32.6***	19.9±2.3	28.4±3.5	25.6±4.6	26.8±2.6	KW	6.3
FW _{shoot}	$15.5 \pm 3.6^{\circ}$	12.2±3.5 ^{bc}	6.4 ± 1.2^{abc}	4.9 ± 0.9^{ab}	2.9 ± 0.6^{ab}	1.8 ± 0.3^{a}	AOV	35.6***	5.0±1.2	10.7±2.9	8.4±2.2	6.4±1.1	AOV	4.3
FW _{root} /FW _{shoot}	3.4 ± 0.4^{a}	4.6 ± 0.6^{ab}	5.2 ± 0.7^{abc}	6.1 ± 1.1^{bc}	6.4 ± 1.0^{bc}	$8.8 \pm 1.0^{\circ}$	KW	23.0***	5.6±0.5	4.7±0.6	6.3±1.0	5.9±0.8	KW	3.4
DW _{root}	5.3 ± 0.6^{d}	4.7 ± 0.6^{cd}	3.8 ± 0.5^{bcd}	2.9 ± 0.4^{abc}	2.5 ± 0.4^{ab}	2.0 ± 0.2^{a}	KW	26.5***	3.0±0.4	4.1±0.4	3.6±0.6	4.0±0.4	KW	6.1
DW _{shoot}	4.2 ± 0.8^{d}	3.2 ± 0.8^{cd}	1.9 ± 0.4^{bc}	1.6 ± 0.3^{bc}	1.1 ± 0.1^{ab}	0.7 ± 0.1^{a}	KW	36.4***	1.6±0.3	2.8±0.7	2.4±0.5	2.0±0.3	KW	3.4
Dw _{root} /DW _{shoot}	1.6 ± 0.2^{a}	2.2 ± 0.3^{ab}	2.3±0.2 ^b	2.0 ± 0.1^{ab}	2.4 ± 0.2^{bc}	$3.4 \pm 0.3^{\circ}$	KW	23.2***	2.3±0.2	2.3±0.2	2.2±0.2	2.4±0.2	KW	1.1
Height	56.2 ± 3.4^{d}	50.2 ± 4.4^{cd}	46.3±2.9 ^{cd}	42.7 ± 2.9^{bc}	32.3 ± 1.7^{ab}	28.5 ± 1.9^{a}	KW	37.0***	40.6±2.9	45.7±3.0	45.3±3.7	43.1±2.7	KW	1.6
Root length	$38.6 \pm 2.5^{\circ}$	$38.0\pm2.2^{\circ}$	33.6±2.7 ^{bc}	30.2 ± 2.8^{bc}	23.9 ± 2.7^{ab}	14.8 ± 1.3^{a}	AOV	12.0***	28.5 ± 2.3^{ab}	31.4 ± 2.2^{ab}	27.6 ± 2.7^{a}	37.7 ± 2.8^{b}	AOV	4.6**
ET	2656 ± 266^{d}	2336±282 ^{cd}	1769±192 ^{bc}	1683±128 ^{bc}	1373±82 ^{ab}	1078 ± 41^{a}	KW	40.4***	1594±139	2093±220	1851±223	1962±152	KW	5.9

Supplementary Table 7. Plant growth and evapotranspiration (ET) in response to ZnO.

36	FW = fresh weight; DW = dry weight; and ET = Evapotranspiration, all in g. Height and root length in cm. Plants were grown in four different ZnO sources:
37	micron-size (Bulk), nanoparticles < 100 nm (NP100), nanoparticles < 50 nm (NP50), and nanowires of 50 nm diameter (NW). Each source was provided at
38	six concentrations (0, 0.1, 1, 10, 100, and 1000 mg l^{-1}) except NW (only up to 10 mg l^{-1}). Data represent means ±SE, where n = 4 and df= 5 for the ZnO
39	concentration factor and $df = 3$ for the source factor. Different letters indicate statistically significant groups according to either paired-t-tests with Bonferroni
40	correction (ANOVA, AOV) or Dunn's test with Benjamini-Hochberg correction (Kruskal-Wallis, KW). The F-value (AOV) or Chi-square value (KW) is
41	indicated as significant at $P \le 0.05$ (*), $P \le 0.01$ (**), or $P \le 0.001$ (***).

	[ZnO] (mg 1 ⁻¹)									So	urce		_	
	0	0.1	1	10	100	1000		1	וו ת	NID100	NIDCO	N TXX 7		valu
	0	0.1	1	10	100	1000	test	value	Bulk	NP100	NP50	NW	test	e
C														
root	42.1 ± 0.2^{a}	43.4 ± 0.2^{b}	44.1±0.9 ^{ab}	44.4 ± 0.7^{b}	43.3±0.9 ^{ab}	44.3 ± 0.7^{b}	Κ	13.1*	44.2±0.6	44.3±0.6	42.8±0.4	42.8±0.3	Κ	4.9
shoot	43.2±0.2 ^{ab}	44.0 ± 0.1^{b}	42.9 ± 0.2^{a}	43.4 ± 0.8^{ab}	41.8 ± 1^{a}	42.5 ± 0.6^{a}	Κ	14.5*	42.8±0.4	43.6±0.4	42.4±0.4	43.5±0.4	Κ	3.1
root/shoot	0.98 ± 0.01^{a}	0.99 ± 0.005^{ab}	1.03 ± 0.02^{bc}	1.03 ± 0.02^{bc}	1.04 ± 0.03^{bc}	$1.05 \pm 0.03^{\circ}$	Κ	13.0*	1.03±0.02	1.02 ± 0.02	1.01 ± 0.01	0.99±0.01	K	1.8
Ν														
root	2.8 ± 0.1^{a}	3.1±0.1 ^b	3.0 ± 0.1^{a}	3.1±0.2 ^{ab}	2.7 ± 0.1^{a}	2.8 ± 0.2^{a}	K	1.5**	2.9±0.1	2.9±0.1	2.9±0.1	3.0±0.1	K	0.4
shoot	3.3±0.1 ^a	3.7±0.1 ^b	3.6 ± 0.1^{b}	3.7 ± 0.2^{b}	3.8 ± 0.2^{b}	4.1 ± 0.2^{b}	Κ	23.5***	3.7±0.1	3.7±0.2	3.7±0.1	3.6±0.1	K	0.4
root/shoot	0.85 ± 0.02	0.83±0.02	0.83±0.03	0.85 ± 0.06	0.74 ± 0.06	0.71±0.07	K	7.4	0.81±0.03	0.82 ± 0.05	0.78 ± 0.03	0.83±0.03	Κ	2.1
C/N														
root	15.3±0.3 ^{ab}	14.2±0.3 ^a	14.9±0.5 ^{ab}	15.2 ± 0.9^{ab}	16.1 ± 0.6^{ab}	16.8 ± 1.0^{b}	Κ	13.2*	15.5±0.5	15.7±0.7	15.2±0.4	14.7±0.5	K	2.1
shoot	$13.2 \pm 0.3^{\circ}$	11.9±0.2 ^b	11.8 ± 0.2^{b}	12.0±0.5 ^b	11.2 ± 0.7^{ab}	11.0 ± 0.9^{a}	Κ	27.1***	11.9±0.4	12.1±0.5	11.6±0.4	12.2±0.3	K	1.3
$\delta^{13}C$														
root	-28.0±0.1	-27.9±0.2	-27.7±0.1	-27.8±0.2	-27.6±0.2	-27.3±0.2	K	6.9	-27.9±0.1	-27.7±0.2	-27.7±0.1	-27.6±0.1	Κ	3.0
shoot	-28.9±0.2 ^a	-29.3±0.2 ^a	-28.9±0.1 ^a	-29.0±0.2 ^a	-28.6±0.3 ^{ab}	-28.0±0.2 ^b	А	6.4***	-28.8±0.2	-28.8±0.2	-28.9±0.1	-28.8±0.2	А	0.2
root/shoot	0.97±0.003	0.95±0.004	0.96±0.01	0.96±0.01	0.97±0.01	0.98±0.01	Κ	5.2	0.97±0.01	0.96±0.01	0.96±0.004	0.96±0.01	K	1.3
$\delta^{15}N$														
root	-0.87±0.33	-0.66±0.29	-0.21±0.37	-0.36±0.31	-0.48±0.40	0.13±0.18	А	6.5	-0.24±0.27	-0.56±0.26	-0.53±0.26	-0.34±0.28	3 A	1.5
shoot	0.35±0.20	0.46±0.21	0.34±0.26	0.39±0.19	0.62±0.39	1.06±0.2	А	2.2	0.61±0.18	0.12±0.24	0.68±0.17	0.68±0.14	A	2.5
root/shoot	3.41±1.9	0.56 ± 2.4	-3.74±3.0	0.38±1.5	-0.21±0.4	0.39±0.3	K	3.8	-0.7±2.03	0.92±1.33	0.75±1.11	-0.7±2.59	K	2.4

Supplementary Table 8. Carbon and Nitrogen content and isotopic composition of plant samples.

43	Plants were grown in four different ZnO sources: non-nano (Bulk), nanoparticles < 100 nm (NP100), nanoparticles < 50 nm (NP50), and nanowires of 50 nm
44	diameter (NW). Each source was provided at six concentrations $(0, 0.1, 1, 10, 100, and 1000 \text{ mg } l^{-1})$ except NW (only up to 10 mg l^{-1}). Data represent means
45	\pm SE, where n = 4 and df= 5 for the ZnO concentration factor and df = 3 for the source factor. Concentration data are expressed in mg l ⁻¹ for the growth
46	solutions, in % for the C and N content of plant samples, and in $\%$ for δ^{13} C and δ^{15} N of plant samples. Different letters indicate statistically significant groups
47	according to either paired-t-tests with Bonferroni correction (ANOVA, A) or Dunn's test with Benjamini-Hochberg correction (Kruskal-Wallis, K). The F-
48	value (ANOVA) or Chi-square value (Kruskal-Wallis) is indicated as significant at $P \le 0.05$ (*), $P \le 0.01$ (**), or $P \le 0.001$ (***).
49	
50	
51	
52	
53	
54	
55	

			[ZnO] (m	g l ⁻¹)				
	0	0.1	1	10	100	1000	value	test
SPAD	40.3±1.6 ^{bc}	$43.8 \pm 1.3^{\circ}$	$42.2 \pm 1.6^{\circ}$	38.4±1.4 ^{bc}	34.0 ± 2.3^{ab}	30.8 ± 1.1^{a}	35.9***	KW
Fv/Fm	0.77 ± 0.007^{b}	0.77 ± 0.007^{b}	0.77 ± 0.008^{b}	0.76 ± 0.01^{b}	0.73 ± 0.012^{a}	0.72 ± 0.01^{a}	19.1**	KW
ΦPSII	0.21 ± 0.019^{d}	0.22 ± 0.017^{d}	0.19 ± 0.014^{cd}	0.14 ± 0.017^{bc}	0.10 ± 0.022^{ab}	0.04 ± 0.016^{a}	11.7***	ANOVA
qP	0.48±0.033 ^c	$0.47 \pm 0.026^{\circ}$	0.46 ± 0.025^{bc}	0.36 ± 0.037^{abc}	0.29 ± 0.052^{ab}	0.13 ± 0.068^{a}	27.1***	KW
ETR	107404±9611 ^{cd}	109922 ± 8578^{d}	97758±7282 ^{cd}	71174±8749 ^{bc}	51170±11389 ^{ab}	21403 ± 8172^{a}	11.7***	ANOVA
qN	361±194 ^a	430 ± 195^{a}	469 ± 208^{ab}	404 ± 211^{ab}	401±263 ^b	205 ± 204^{b}	13.8*	KW
NPQ	894 ± 343^{a}	1083 ± 347^{a}	1681 ± 462^{ab}	1257 ± 502^{ab}	3130±1196 ^b	3890±997 ^b	16.6**	KW
Fv'/Fm'	2.1±0.06	2.1±0.07	2.3±0.15	2.5±0.23	2.3±0.09	2.5±0.21	9.7	KW
ΦCO_2	0.016 ± 0.002^{bc}	0.018 ± 0.002^{c}	0.015 ± 0.001^{bc}	0.01 ± 0.001^{ab}	0.008 ± 0.002^{a}	0.004 ± 0.001^{a}	25.8***	KW
А	$15.1 \pm 2.0 b^{c}$	$17.1\pm2.1^{\circ}$	14.7 ± 1.4^{bc}	9.0 ± 1.5^{ab}	7.3 ± 1.7^{a}	3.1 ± 0.6^{a}	26.1***	KW
gs	0.18 ± 0.026^{bc}	0.22±0.033 ^c	0.2 ± 0.026^{bc}	0.11 ± 0.025^{abc}	0.08 ± 0.019^{ab}	0.04 ± 0.006^{a}	27.8***	KW
Е	4.3±0.58 ^{bc}	$4.8 \pm 0.61^{\circ}$	5.2 ± 0.51^{bc}	2.9 ± 0.53^{ab}	1.9 ± 0.42^{a}	1.2 ± 0.16^{a}	29.2***	KW
VPD	2.5 ± 0.08^{ab}	2.4 ± 0.1^{a}	2.8 ± 0.12^{ab}	2.8 ± 0.16^{ab}	2.4 ± 0.09^{ab}	3.0±0.18 ^b	4.4**	ANOVA

Supplementary Table 9. Photosynthetic performance

_						
	Bulk	NP100	NP50	NW	value	test
SPAD	38.3±1.6	39.7±1.2	37.1±1.6	40.0±1.9	1.3	KW
Fv/Fm	0.75 ± 0.008^{a}	0.77 ± 0.006^{ab}	0.75 ± 0.008^{a}	0.78 ± 0.008^{b}	8.4*	KW
ΦPSII	0.13 ± 0.014^{a}	$0.20 \pm 0.018^{\circ}$	0.15 ± 0.021^{ab}	0.19 ± 0.019^{bc}	5.5**	ANOVA
qP	0.35 ± 0.027^{a}	0.47 ± 0.036^{b}	0.36 ± 0.044^{ab}	0.44 ± 0.034^{ab}	10.6*	KW
ETR	68288±7376 ^a	102297±9244 ^c	78128±10905 ^{ab}	98936±9789 ^{bc}	5.5**	ANOVA

qN	225±122	613±193	457±182	240±163	3.9	KW
NPQ	2392±586	1000 ± 405	1714±460	1590±427	4.1	KW
Fv'/Fm'	2.3±0.06	2.3±0.14	2.2±0.11	2.3±0.17	2.9	KW
ΦCO_2	0.010 ± 0.002^{a}	0.015 ± 0.002^{b}	0.013 ± 0.002^{ab}	0.015 ± 0.002^{b}	8.0*	KW
А	9.4±1.7	14.6±1.6	12.1±1.9	14.2±1.9	7.8	KW
gs	0.12±0.023	0.19±0.025	0.14±0.024	0.19±0.034	6.4	ANOVA
E	2.9±0.42	4.3±0.52	3.6±0.59	4.6±0.62	5.8	KW
VPD	2.7±0.11	2.4±0.1	2.7 ± 0.08	2.7±0.15	1.7	ANOVA

Plants were grown in four different ZnO sources: micron-size (Bulk), nanoparticles < 100 nm (NP100), nanoparticles < 50 nm (NP50), and nanowires of 50 nm diameter (NW). Each source was provided at six concentrations (0, 0.1, 1, 10, 100, and 1000 mg l⁻¹) except NW (only up to 10 mg l⁻¹). Data represent means ±SE, where n = 4 and df= 5 for the ZnO concentration factor and df = 3 for the source factor. Variables SPAD, Fv/Fm, Φ PSII, qP, qN, NPQ, Fv/Fm', and Φ CO₂ are dimensionless. Electron transmission rate (ETR) is expressed in mol m⁻² s⁻¹, net photosynthetic rate (A) in µmol CO₂ m⁻² s⁻¹, stomatal conductance (gs) in mol H₂O m⁻² s⁻¹, transpiration (E) in mmol H₂O m⁻² s⁻¹, and vapour pressure deficit of the leaf (VPD) in kPa. Different letters indicate statistically significant groups according to either paired-t-tests with Bonferroni correction (ANOVA) or Dunn's test with Benjamini-Hochberg correction (Kruskal-Wallis, KW). The F-value (ANOVA) or Chi-square value (KW) is indicated as significant at *P* <0.05 (*), *P* <0.01 (**), or *P* <0.001(***).

64

	$[ZnO] (mg l^{-1})$					-	Source					_		
	0	0.1	1	10	100	1000	value	test	Bulk	NP100	NP50	NW	value	test
Root														
[Ca]	9.8±1.0	10.0±0.7	10.4±0.6	9.1±0.9	8.2±1.4	8.4±0.9	8	KW	9.8±0.8	8.4±0.7	10.1±0.6	9.3±0.7	3	KW
[Cu]	22.1±2.3	23.6±2.2	25.6±1.3	25.6±1.6	21.2±1.7	20.2±1.3	9	KW	25.8±1.7	21.2±1.3	21.9±1.3	24.5±1.5	6	KW
[K]	17.5±1.1 [°]	16.6±1.1 ^{bc}	15.2 ± 0.8^{bc}	15.2 ± 1.2^{bc}	12.3 ± 0.7^{ab}	10.3 ± 0.7^{a}	7***	AV	14.8±1.0	15.5±0.9	13.7±0.9	15.3±0.9	1	AV
[Fe]	354 ± 28^{a}	395 ± 34^{ab}	526 ± 65^{abc}	583 ± 90^{bc}	395 ± 32^{abc}	705±134 ^c	17**	KW	598±89	464 ± 62	460±36	423±31	2	KW
[Mg]	1.1 ± 0.1^{ab}	1.1 ± 0.05^{ab}	1.3±0.1 ^b	1.3±0.1 ^{ab}	1.1 ± 0.1^{ab}	1.1 ± 0.1^{a}	14*	KW	1.3±0.1	1.1±0.1	1.2±0.1	1.3±0.1	5	KW
[Mn]	30.3 ± 3.4^{a}	32.4 ± 3.8^{a}	41.1 ± 4.8^{ab}	43.8 ± 5.9^{ab}	44.3 ± 8.2^{ab}	54.1±4.9 ^b	15*	KW	40.5±3.7	33.8±3.5	49.9±5.4	34.7±2.9	6	KW
[P]	6.5 ± 0.3^{b}	$8.2 \pm 0.3^{\circ}$	$8.0\pm0.2^{\circ}$	7.0 ± 0.3^{bc}	6.2 ± 0.6^{ab}	4.9±0.3 ^a	15***	AV	6.9±0.3	6.4±0.4	7.1±0.3	7.3±0.3	2	AV
[S]	3.3±0.1	2.9±0.1	3.1±0.1	3.0±0.1	2.9±0.1	2.8±0.2	10	KW	3.1±0.1	3.0±0.1	2.9±0.1	3.0±0.1	1	KW
Shoot														
[Ca]	6.5±0.9	6.5±0.7	6.0±0.4	7.1±0.5	7.9 ± 0.7	7.1±0.7	8	KW	7.4±0.7	6.4±0.4	6.5 ± 0.4	6.9±0.7	1	KW
[Cu]	12.5 ± 1.0^{b}	17.6±1.5°	15.8±0.7 ^c	13±0.9 ^{bc}	10.3±0.5 ^{ab}	8.8 ± 0.7^{a}	42***	KW	13.9±1.0	13.1±1.3	11.9±0.6	15.1±1.0	7	KW
[K]	32.5 ± 1.2^{a}	32.4 ± 0.9^{a}	32.6±0.9 ^a	36.0 ± 0.9^{b}	37.2 ± 1.8^{b}	32.4 ± 1.5^{a}	3*	AV	33.5±0.9	34.7±1.1	33.8±0.9	32.2±1.2	1	AV
[Fe]	98.7±12.9	89.5±7.1	91.4±5.0	102.1±12.1	68.4±5.2	92.1±9.7	9	KW	96.7±9.7	83.1±6.3	87.1±5.6	102.1±9.7	3	KW
[Mg]	1.7±0.1	1.7±0.1	1.6±0.1	1.6±0.1	1.8±0.1	1.6±0.1	1	KW	1.7±0.1	1.7±0.1	1.6±0.1	1.7±0.1	0	KW
[Mn]	101.2±12.7 ^b	112.9±16.2 ^b	109.9±11.3 ^b	54.7 ± 3.2^{a}	35.2 ± 3.3^{a}	34.3±3.3 ^a	50***	KW	79.1±10.3 ^{ab}	61.5±8.3 ^a	69.7 ± 9.0^{a}	117.8±16.3 ^b	12**	KW
[P]	3.2 ± 0.3^{a}	3.0 ± 0.1^{a}	3.3±0.1 ^{ab}	$4.3 \pm 0.3^{\circ}$	$4.3 \pm 0.2^{\circ}$	3.7 ± 0.2^{bc}	37***	KW	3.8±0.2	3.5±0.2	3.7±0.2	3.4±0.2	2	KW
[S]	7.6 ± 0.4^{a}	8.3±0.4 ^{ab}	8.4±0.3 ^{ab}	9.7 ± 0.5^{b}	10.1 ± 0.7^{b}	7.3 ± 0.5^{a}	27***	KW	8.8±0.4	8.5±0.4	8.2±0.4	8.5±0.4	1	KW

Supplementary Table 10. Element content in plant tissues.

67	Concentrations are provided in mg g ⁻¹ except for Cu, Fe, and Mn in roots (in µg g ⁻¹). Plants were grown in four different ZnO sources: micron-size (Bulk),
68	nanoparticles < 100 nm (NP100), nanoparticles < 50 nm (NP50), and nanowires of 50 nm diameter (NW). Each source was provided at six concentrations (0,
69	0.1, 1, 10, 100, and 1000 mg l^{-1}) except NW (only up to 10 mg l^{-1}). Data represent means ±SE, where n = 4 and df= 5 for the ZnO concentration factor and df
70	= 3 for the source factor. Different letters indicate statistically significant groups according to either paired-t-tests with Bonferroni correction (ANOVA) or
71	Dunn's test with Benjamini-Hochberg correction (Kruskal-Wallis, KW). The F-value (ANOVA) or Chi-square value (KW) is indicated as significant at P <
72	0.05 (*), $P \le 0.01$ (**), or $P \le 0.001$ (***).
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	

Supplementary Fig. 1. Distribution of Al across the different pools. Plants were treated with four different ZnO sources: A) micron-size (Bulk), B) NP < 100 nm (NP100), C) NP < 50 nm (NP50), and D) nanowires of 50 nm diameter (NW). Data represent means, where n = 4, expressed as Al % relative to the total Al incorporated to the system from the nutritive solution and ZnO treatments.

- 88
- 89
- 90
- 91
- 92
- 93

- 94 Supplementary Fig. 2. Light microscopy images of cross 1 µm sections of the root. A) Control;
- 95 B) Bulk, 1000 mg l⁻¹ ZnO; C) NP100, 1000 mg l⁻¹ ZnO; D) NP50, 1000 mg l⁻¹ ZnO; E) NW, 10
- 96 mg l^{-1} ZnO.

- Supplementary Fig. 3. Transmission electron microscopy images of the root epidermis. A) Control; B) Bulk, 1000 mg l^{-1} ZnO; C) NP100, 1000 mg l^{-1} ZnO; D) NP50, 1000 mg l^{-1} ZnO.

- 119 Supplementary Fig. 4. Transmission electron microscopy images of the root cortex. A) Control;
- 120 B) Bulk, 1000 mg l⁻¹ ZnO; C) NP100, 1000 mg l⁻¹ ZnO; D) NP50, 1000 mg l⁻¹ ZnO.
- 121

