Supporting Information for

Indium-Modified Ga₂O₃ Hierarchical Nanosheets as Highly Efficient Photocatalysts for Degradation of Perfluorooctanoic Acid

Xianjun Tan^a, Guanhan Chen^b, Dingyu Xing^b, Wenhui Ding^a, Hao Liu^b, Ting Li^c, Yuxiong Huang^{a,*}

^a Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China.

^b Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, P. R. China.

^c Shenzhen Shenshui Longgang Water Group (Group) Co., Ltd. (LGWG), Shenzhen 518055,P. R. China

*Corresponding author

Email Address: huang_yuxiong@sz.tsinghua.edu.cn Tel: +86 0755 3688 1774

CONTENTS

Figure S1. The setup of photodegradation experiments.

Figure S2. The spectral distribution of high-pressure Hg lamp.

Figure S3. Comparison of PFOA decomposition rate constants using Ga₂O₃, In-Ga₂O₃ and UV photolysis.

Figure S4. Recycling performance of In-Ga₂O₃ nanosheets for PFOA degradation.

Figure S5. SEM images of (a) Cu-Ga₂O₃ (b) Zn-Ga₂O₃ (c) Co-Ga₂O₃ (d) Mn-Ga₂O₃ hierarchical nanosheets.

Figure S6. XRD patterns of different transition metal modified Ga₂O₃ hierarchical nanosheets.

Figure S7. Comparison of FT-IR spectra of (a) Ga₂O₃ and mixture of Ga₂O₃/PFOA; (b) In-Ga₂O₃ and mixture of In-Ga₂O₃/PFOA.

Figure S8. Dark adsorption experiments of Ga₂O₃ and In-Ga₂O₃.

Figure S9. Photodegradation of PFOA by Ga₂O₃ in presence of different quenching agents.

Table S1 Atomic percentage in different catalysts analyzed by XPS.

Table S2 Physicochemical properties of PFOA and intermediates.

Figure S1. The setup of photodegradation experiments.

Figure S2. The spectral distribution of high-pressure Hg lamp.

Figure S3. Comparison of PFOA decomposition rate constants using Ga_2O_3 , In- Ga_2O_3 and UV photolysis.

Figure S4. Recycling performance of In-Ga₂O₃ nanosheets for PFOA degradation.

Figure S5. SEM images of (a) Cu-Ga₂O₃ (b) Zn-Ga₂O₃ (c) Co-Ga₂O₃ (d) Mn-Ga₂O₃

hierarchical nanosheets.

Figure S6. XRD patterns of different transition metal modified Ga₂O₃ hierarchical nanosheets.

Figure S7. Comparison of FT-IR spectra of (a) Ga₂O₃ and mixture of Ga₂O₃/PFOA; (b) In-Ga₂O₃ and mixture of In-Ga₂O₃/PFOA.

Figure S8. Dark adsorption experiments of Ga₂O₃ and In-Ga₂O_{3.} Reaction condition: 0.5 g/L catalysts, 20 mg/L PFOA, room temperature.

Figure S9. Photodegradation of PFOA by Ga₂O₃ in presence of different quenching

agents.

Sample	C _{1s}	O _{1s}	Ga _{2p3}	In _{3d5}
Ga ₂ O ₃	11.8%	50.3%	37.9%	_
In-Ga ₂ O ₃	14.2%	49.1%	34.7%	2.0%

 Table S1 Atomic percentage in different catalysts analyzed by XPS.

No	PFAS	Molecular	Chain	Structure	Formula
		Weight	Length		
1	Perfluorooctanoic Acid	414.07	8		$C_8HF_{15}O_2$
	(PFOA)				
2	Perfluoroheptanoic acid	364.062	7	A to the to	$C_7HF_{13}O_2$
	(PFHpA)				
3	Perfluorohexanoic acid	314.054	6	y y y y y	$C_6HF_{11}O_2$
	(PFHxA)				
4	Perfluoropentanoic acid	264.047	5	Ly Ly La	C ₅ HF ₉ O ₂
	(PFPeA)				
5	Perfluorobutyric Acid	214.039	4	$\sqrt{2}\sqrt{2}$	C ₄ HF ₇ O ₂
	(PFBA)				
6	Perfluoropropionic acid	164.03	3	Lyte	$C_3HF_5O_2$
	(PFPrA)				

Table S2 Physicochemical properties of PFOA and intermediates