

† Electronic supplementary information (ESI)

**Nano-sized iron oxides supported on polyester textile to remove  
fluoroquinolones in hospital wastewater**

**Gnougon Nina COULIBALY<sup>a</sup>, Sami RTIMI<sup>b</sup>, Aymen Amin ASSADI<sup>a</sup>, Khalil**

**HANNA<sup>a,c\*</sup>**

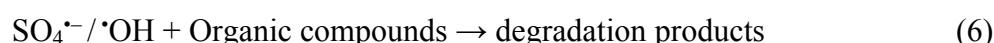
<sup>a</sup> *Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR6226, F-35000 Rennes, France.*

<sup>b</sup> *Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-LTP, Station 12, CH-1015 Lausanne, Switzerland.*

<sup>c</sup> *Institut Universitaire de France (IUF), MESRI, 1 rue Descartes, 75231 Paris, France.*

\*Corresponding author: Tel.: +33 2 23 23 80 27; khalil.hanna@ensc-rennes.fr

Number of Pages: 7


Number of Figures: 4

Number of Tables: 2

Number of Text: 1

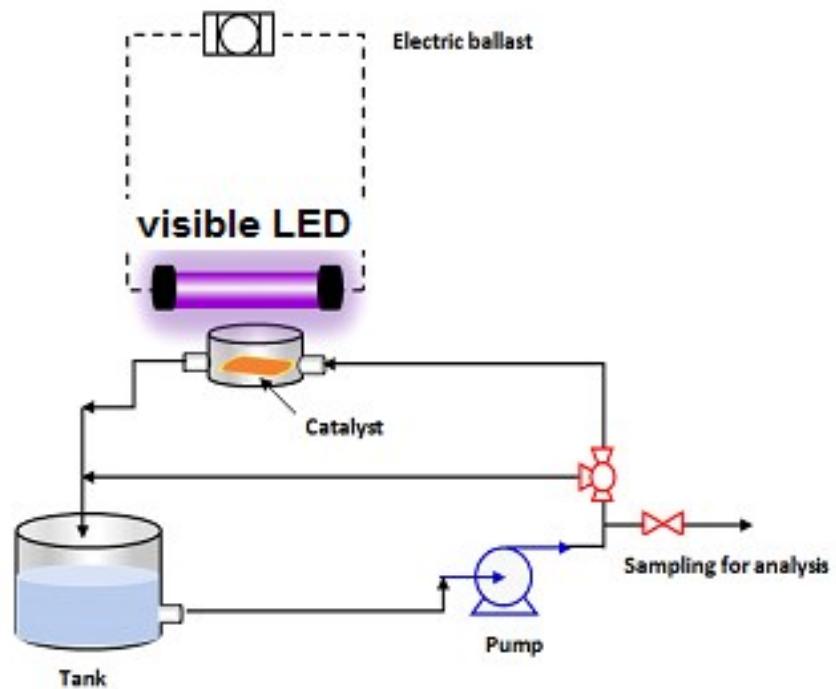
† Electronic supplementary information (ESI)

**Text S1:** Potential reactions in the  $\text{FeOx}_3/\text{PMS}$  system under irradiation.

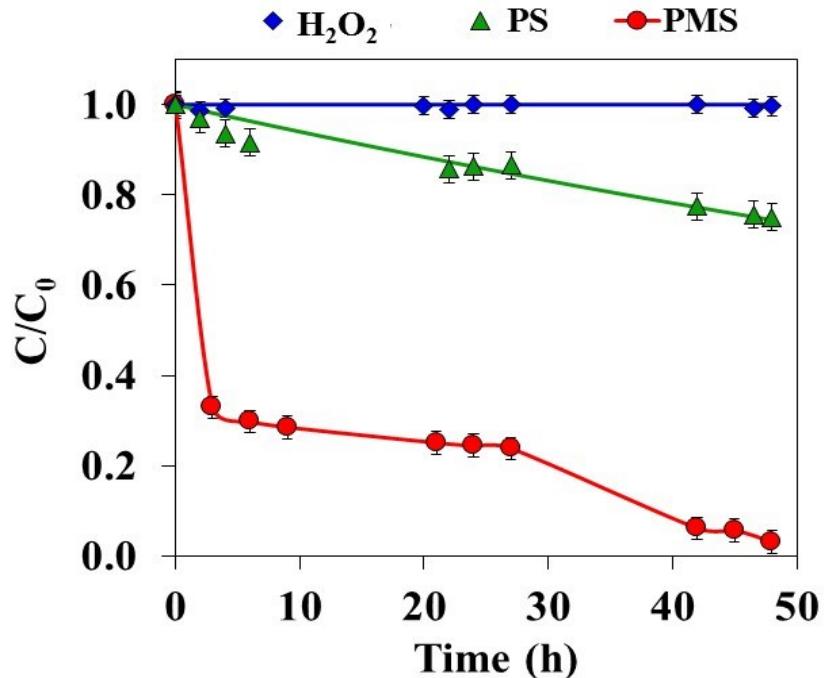


**Table S1.** Inorganic species and physico-chemical characteristics of SWW and RHW

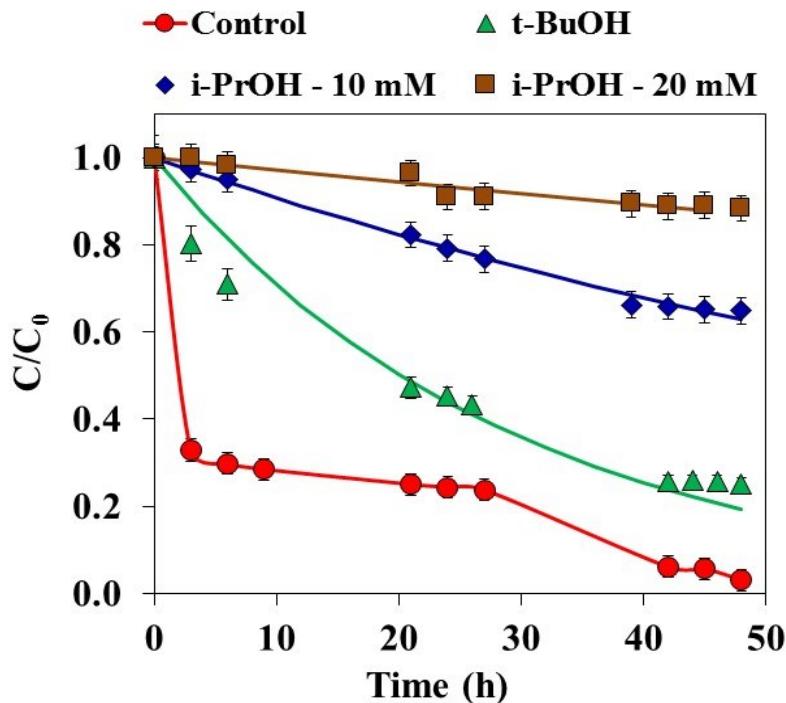
|                                        | SWW     | RHW     |
|----------------------------------------|---------|---------|
| pH                                     | 8.0±0.5 | 6.8±0.2 |
| Turbidity (NTU)                        | 2±1     | 196±5   |
| Conductivity ( $\mu\text{S cm}^{-1}$ ) | 1250±5  | 1340±5  |
| TOC ( $\text{mg L}^{-1}$ )             | 70±5    | 50±10   |
| Suspended solid ( $\text{mg L}^{-1}$ ) | 0       | 20±2    |
| Chloride ( $\text{mg L}^{-1}$ )        | 450±20  | 620±10  |
| Nitrate ( $\text{mg L}^{-1}$ )         | 35±2    | 7±2     |
| Sulfate ( $\text{mg L}^{-1}$ )         | 20±2    | 60±10   |
| Phosphate ( $\text{mg L}^{-1}$ )       | 150±10  | 60±10   |


Synthetic wastewater (SWW) were prepared by adding 400  $\text{mg L}^{-1}$  of  $\text{NaCl}$ , 50  $\text{mg L}^{-1}$  of citric acid, 100  $\text{mg L}^{-1}$  of sucrose and 230  $\text{mg L}^{-1}$   $\text{Na}_2\text{HPO}_4$  to tap water (conductivity 408  $\mu\text{S cm}^{-1}$ ).

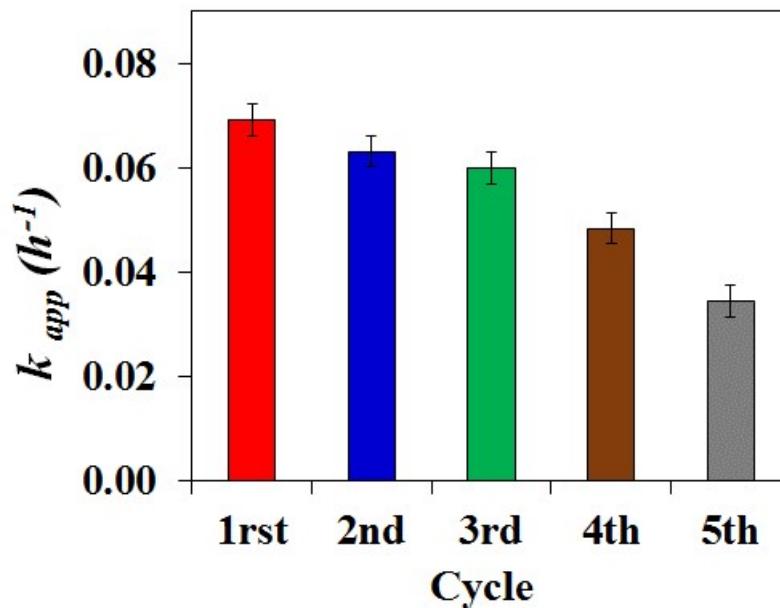
**Table S2.** Reactivity percentage of radicals with species in solution


| Radical                  | Species and concentration | $k'' (M^{-1} s^{-1})$ | $k' (s^{-1})$     | % of reactivity |
|--------------------------|---------------------------|-----------------------|-------------------|-----------------|
| $\text{HO}^\bullet$      | FLU (5 $\mu\text{M}$ )    | $1.2 \times 10^{10}$  | $0.6 \times 10^5$ | 2               |
|                          | t-But (5 mM)              | $6.0 \times 10^8$     | $3.0 \times 10^6$ | 98              |
| $\text{SO}_4^{\bullet-}$ | FLU (5 $\mu\text{M}$ )    | $1.8 \times 10^9$     | $0.9 \times 10^4$ | 68              |
|                          | t-But (5 mM)              | $8.4 \times 10^5$     | $4.2 \times 10^3$ | 32              |

$k''$ : second order rate constant and  $k' = k'' * [\text{species}]$


% of reactivity indicates the percentage of hydroxyl radicals or sulfate radicals reacted.




**Fig. S1.** Schematic diagram of recirculation glass reactor system



**Fig. S2.** Effect of oxidant on FLU removal with catalyst  $\text{FeOx}_3$  under visible irradiation. Experimental conditions:  $[\text{FeOx}_3] = 0.26 \text{ g m}^{-2}$  on PES,  $[\text{FLU}]_0 = 5 \mu\text{M}$ , visible reaction time = 48 h,  $\text{pH}_0 = 7.0 \pm 0.2$ ,  $V = 200 \text{ mL}$ , recirculation flow rate =  $325 \text{ mL min}^{-1}$ ,  $[\text{H}_2\text{O}_2]_0 = [\text{PS}]_0 = [\text{PMS}]_0 = 0.5 \text{ mM}$ . Abbreviations: FLU = flumequine, PS = persulfate,  $\text{H}_2\text{O}_2$  = hydrogen peroxide, PMS = peroxymonosulfate,  $\text{FeOx}_3$  corresponding to 3%  $\text{O}_2$  in the sputtering chamber. For PMS, the solid line is only a visual guide.



**Fig. S3.** Effect of radicals scavengers on FLU removal. Experimental conditions:  $[FLU]_0 = 5 \mu M$ ,  $[PMS]_0 = 0.5 \text{ mM}$ ,  $[FeOx_3] = 0.26 \text{ g m}^{-2}$  on PES, reaction time = 48 h,  $[i\text{-PrOH}]_0 = 10 - 20 \text{ mM}$ ,  $[t\text{-BuOH}]_0 = 5 \text{ mM}$ , visible reaction time = 48 h,  $pH_0 = 7.0 \pm 0.2$ ,  $V = 200 \text{ mL}$ , recirculation flowrate =  $325 \text{ mL min}^{-1}$ . Abbreviations: FLU = flumequine, PMS = peroxymonosulfate, t-BuOH = tert-Butyl alcohol, i-PrOH= isopropanol,  $FeOx_3$  corresponding to 3%  $O_2$  in the sputtering chamber. For the control test, the solid line is only a visual guide.



**Fig. S4.** FLU removal rate constant in RHW using  $\text{FeOx}_3$ -PES for five successive oxidation runs. Experimental conditions:  $[\text{FLU}]_0 = 5\mu\text{M}$ ,  $[\text{PMS}]_0 = 3\text{ mM}$ ,  $[\text{FeOx}_3] = 0.26\text{ g m}^{-2}$  on PES,  $\text{pH}_0 = 7.0 \pm 0.2$ , reaction time = 48 h, recirculation flow rate =  $325\text{ mL min}^{-1}$ . Abbreviations: FLU = flumequine, PMS = peroxymonosulfate, RHW = Real Hospital Wastewater,  $\text{FeOx}_3$  corresponding to 3%  $\text{O}_2$  in the sputtering chamber.