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GO synthesis.  A mixture of H2SO4/H3PO4 at a ratio of 9:1 v/v, (i.e., 360:40 mL) was slowly 

added to a mixture of graphite flakes (3.0 g) and KMnO4 (18.0 g) in an Erlenmeyer flask (1000 

mL). The sample temperature was slightly increased to 30oC during the slow acid addition. The 

mixture was stirred and allowed to incubate at 50oC for 12 h in a water bath heated on a hot plate. 

The sample was then transferred to an ice water bath. A solution of water (400 mL) and 30% 

H2O2 (w/w, 3 mL) was added to the sample that was incubated for 30 min. The oxidized graphite 

flakes were collected by centrifugation (3000 g, 10 min) and the precipitate was re-suspended in 

10 % HCl (v/v) and centrifuged again. The re-suspension and centrifugation steps were repeated 

3 times. Subsequently, the sample was rinsed with pure water by repeated centrifugation (8000 g, 

30 min) and re-suspension in pure water until the pH became constant (~5.0). The oxidized 

graphite sample was lyophilized (FD-4.5, KINGMECH, Taiwan). About 6.0 g of oxidized 

graphite powders could be obtained and was stored in the dark at room temperature. Prior to use, 

1,000 mg of oxidized graphite sample was added to 1 L of pure water and exfoliated in a cleaner-

type of sonicator for 60 min to obtain GO.

rGO synthesis. GO was reduced by ascorbic acid to rGO.1 Briefly, 100 mg/L GO was mixed 

with 0.1 M ascorbic acid and then the mixture was allowed to react at 80oC for 24 h.  Afterwards, 

the rGO material was collected on 0.45 μm filtration membranes. The rGO material was then re-

dispersed in DI water. The procedure was repeated 4 times to remove residual chemicals (e.g., 

ascorbic acid and byproducts). The rGO sample was then lyophilized to obtain rGO powders.
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Figure S1. Spectra of solar simulator sunlight and outdoor summer noon sunlight in a clear day in 

Tainan, Taiwan (23°0'0.44'' N, 120°13'18.1'' E).2
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Figure S2. (a) Image of GO and rGO, (b) the absorbance spectrum and Tauc plot of rGO, (c) the FTIR 

spectra of GO and rGO, and (d) the photocatalytic reduction of Cr(VI) by rGO under solar irradiation. 

Condition: [rGO] = 200 mg/L, [oxalate] = 20 mM, [Cr(VI)] = 0.32 mM, pH = 3.0. The error bars 

indicate ± one standard deviation from triplicate samples. The Cr(VI) concentrations of rGO samples 

already account for the dark control experiment by subtracting the lost Cr(VI) concentrations in 

corresponding dark control samples. The GO data that are used for comparison are those presented in 

Figure 3.
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Figure S3. Photocatalytic reduction of Cr(VI) by GO in air-equilibrated, argon- or O2-bubbled 

experiments under solar irradiation. Condition: [GO] = 200 mg/L, [oxalate] = 20 mM, pH = 3.0.
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(a) Oxalate
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Figure S4.  UV-visible absorbance spectra of samples during photoreduction of Cr(VI) in the presence 

of (a) oxalate, or (b) formate under sunlight irradiation. Condition: [Cr(VI)] = 0.16 mM, [Oxalate] or 

[Formate] = 20 mM, [GO] = 200 mg/L, pH = 3.0. The UV-visible spectra were recorded immediately 

upon sampling after passing through 0.22-μm PTFE filters to remove GO.
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Figure S5. HPLC chromatogram showing the speciation of Cr during photoreaction. The photoreaction 

condition: [GO] = 200 mg/L, [oxalate] = 1 mM, pH = 3.0, [Cr(VI)]0 = 0.32 mM.
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Sample O:C C-C/C-H% C-O% C=O% O-C=O%
Before 0.51 38.7 53.0 5.0 3.3

After 3 cycles 0.44 40.1 48.8 6.2 4.9

(b) After 3 cycles

Figure S6. XPS spectra showing the oxygen-to-carbon ratio (O:C) and functionality changes of GO (a) 

before, and (b) after 3 cycles of photoreaction under visible light irradiation.  Condition: [GO] = 200 

mg/L, [Cr(VI)] = 0.32 mM, [oxalate] = 20 mM, pH = 3.0.  Used GO was dialyzed (3 KDa MWCO UF 

membrane) against DI water to remove residual chemicals (e.g., Cr, oxalate, etc.) before XPS analysis.
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Table S1. Summary of studies using carbon-based nanomaterials in photocatalytic reduction of Cr(VI)

Photocatalyst Catalyst
dose (g/L) Light source Organic

electron donor pH [Cr(VI)]
reduction

Δ[Cr(VI)]/Δt 
/[catalyst]

(mM h-1 L g-1)
Ref.

GO 0.2 Simulated sunlight None 3 0.11 mM in 2 h 0.285 This work

GO 0.2 Simulated sunlight Oxalate 3 0.27 mM in 0.5 h 2.730 This work

GO 0.2 Visible light, > 400 nm Oxalate 3 0.18 mM in 0.5 h 1.820 This work

GO 0.05 Simulated sunlight None 3 0.11 mM in 2 h 1.100 This work

GO 0.05 Simulated sunlight Oxalate 3 0.30 mM in 0.67 h 8.955 This work

rGO/TiO2 composite 1 500 W Hg lamp None NA* 0.17 mM in 4 h 0.043 Liu et al., RSC 
Advances, 2011.3

rGO/TiO2 composite 0.2 125 W Hg lamp, > 450 
nm None 2.6 0.14 mM in 4 h 0.173

Zhao et al., J. 
Colloid and 
Interface Science, 
2013.44

Carbon dot/TiO2 
composite 1 365 nm UV LED light None 3 0.12 mM in 0.5 h 0.230

Zhang et al., 
Applied Catalyst 
B-Environmental, 
2018.5

Graphene 
hydrogel/TiO2 
composite

1 250 W Hg lamp, 365 
nm None 5.5 0.10 mM in 0.5 h 0.192

Li et al., Applied 
Catalyst B-
Environmental, 
2016.6

rGO/TiO2 
microspheres 
composite

0.67 300 W Xe lamp, > 400 
nm None 3 0.15 mM in 3 h 0.077

Liu et al., J. Alloys 
and Compounds, 
2017.7

rGO/TiO2 composite 0.8 125 W Hg lamp None 2 0.31 mM in 3.5 h 0.110
Shaikh et al., J. 
Nanoparticles 
Research, 2017.8

rGO/ZnO composite 1 500 W Hg lamp None NA 0.19 mM in 4 h 0.048
Liu et al., 
Catalysis Science 
& Technology, 
2011.9

rGO/ZnO composite 1 500 W Hg lamp None NA 0.18 mM in 1 h 0.184
Liu et al., 
Chemical 
Engineering J., 
2012.10

rGO/ZnO composite 0.25 300 W Xe lamp, 365 
nm None NA 0.07 mM in 1.3 h 0.200 Zhang et al., 

Applied Catalyst 
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B-Environmental, 
2013.11

rGO/CdS composite 1 400-W halogen lamp, > 
400 nm None NA 0.17 mM in 4 h 0.043

Liu et al., 
Chemical 
Communications, 
2011.12

rGO/UiO-66(NH2) 
composite 0.5 300-W Xe arc lamp, > 

420 nm None 2 0.19 mM in 1.7 h 0.230
Shen et al., RSC 
Advances, 
2014.13

Graphene/hematite 
composites 1 300 W Xe lamp, > 420 

nm None 2 0.18 mM in 2.7 h 0.066
Du et al., RSC 
Advances, 
2015.14

GO/coordination 
polymer nanobelt 
composite

0.25 300 W Xe lamp, ≥ 420 
nm None NA 0.05 mM in 3.3 h 0.065 Shi et al., Dalton 

Trans., 2015.15

rGO/magnetic Fe3O4 
composite 0.5 Sunlight None 3 0.06 mM in 0.5 h 0.240

Boruah et al., 
RSC Advances, 
2016.16

GO, doped with 
Fe(III) 0.04 500 W halogen lamp, > 

420 nm None 3 0.04 mM in 1 h 1.0
Liu et al., 
Scientific Report, 
2017.17

Graphene/Ni3S2 
composite 1 300 W Xe lamp, > 400 

nm None NA 0.35 mM in 3 h 0.117
Hu et al., J. 
Colloid and 
Interface Science, 
2017.18

Graphene/Nb2O5 
nanorods composite 1 300 W Xe lamp, > 420 

nm 4-chlorophenol 3 0.17 mM in 4 h 0.043
Yang et al., 
Chemical 
Engineering J., 
2018.19

rGO/ZnAlTi double 
oxide composite 0.4 30 W LED lamp None 3 0.05 mM in 3 h 0.040

Ye et al., 
Chemosphere, 
2019.20

rGO 
functionalized/CuS 
composite

0.4 Sunlight Glucose 3 0.08 mM in 0.4 h 0.452
Borthakur et al., 
ACS Sustainable 
Chem. Engr., 
2019.21

rGO/Ag/Ag3PO4 
microspheres 1 210 W Xe lamp, > 400 

nm Lactic acid 5 0.12 mM in 0.5 h 0.230
Liu et al., 
Chemical Engr. 
J., 2020.22

g-C3N4/ZnO 
composite 2 500 W Xe lamp, > 400 

nm None NA 0.05 mM in 1.67 h 0.014
Liu et al., 
Chemical Engr. 
J., 2012.23

S10



g-C3N4, formate 
modified 1 300 W Xe lamp, > 420 

nm Formate NA 0.19 mM in 4 h 0.048
Dong et al., J. 
Phys. Chem. C, 
2013.24

g-C3N4 1 300 W Xe lamp, > 420 
nm Trichlorophenol 3 0.095 mM in 2 h 0.048

Hu et al., 
Catalysis Today, 
2014.25

g-C3N4 1 250 W Xe lamp, > 420 
nm Citric acid 3.2 0.34 mM in 5 h 0.068

Zhang et al., 
Separation and 
Purification 
Technol., 2015.26

g-C3N4, acid-treated 1 250 W Xe lamp, > 420 
nm Citric acid 3.2 0.34 mM in 3.5 h 0.097

Zhang et al., 
Separation and 
Purification 
Technol., 2015.26

g-C3N4/α-Fe2O3 
composite 2 300 W Xe lamp, > 400 

nm None 2 0.19 mM in 2.5 h 0.038
Xiao et al., 
Applied Surface 
Science, 2015.27

g-C3N4/Ti3+-TiO2 
composite 1 300 W Dy lamp, > 400 

nm None 2 0.14 mM in 2 h 0.068
Lu et al., Applied 
Surface Science, 
2015.28

g-C3N4, HNO3- 
treated 1 250 W Xe lamp, > 420 

nm Citric acid 3.1 0.07 mM in 2.5 h 0.027
Wei et al., Applied 
Catalysis A-
General, 2016.29

g-C3N4/TiO2 
composite 1 300 W Xe lamp, > 420 

nm None 3 0.095 mM in 4 h 0.024
Mohini et al., 
Materials 
Research Bulletin, 
2016.30

g-C3N4/MIL-53(Fe) 
composite 0.4 500 W Xe lamp, > 420 

nm None 3 0.18 mM in 3 h 0.148
Huang et al., 
Applied Surface 
Science, 2017.31

g-C3N4, sulfur doped 0.25 300 W Xe lamp, > 400 
nm Oxalate NA 0.096 mM in 0.5 h 0.768

Zheng et al., 
Molecules, 
2017.32

g-C3N4, loaded on 
TiSBA15 1 300 W Xe lamp, > 420 

nm None 2.3 0.14 mM in 5 h 0.028
Liu et al., Applied 
catalysis B-
Environmental, 
2017.33

g-C3N4/Bi12GeO20 
composite 3 300 W Dy lamp, > 400 

nm None 2.5 0.19 mM in 3 h 0.021
Wan et al., 
Applied Catalysis 
B-Environmental, 
2017.34
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g-C3N4, Mn doped 
and carboxylated 0.5 300 W Xe lamp, > 400 

nm None NA 0.10 mM in 1 h 0.200
Wang et al., J. 
Hazardous 
Materials, 2017.35

g-C3N4/SnS2/SnO2 
composites 0.5 300 W Xe lamp, > 400 

nm Ethanol 2.1 0.35 mM in 1 h 0.728
Yang et al., 
Chemical Engr. 
J., 2018.36

g-C3N4/charcoal 
composite 1 30 W LED lamp, > 420 

nm None 3 0.018 mM in 3 h 0.006
Lamkhao et al., 
Chemosphere, 
2018.37

g-C3N4, phosphorus 
doped 1 300 W Xe lamp, > 400 

nm Dichlorophenol 2.13 0.39 mM in 1 h 0.385
Deng et al., 
Applied Catalysis 
B-Environmental, 
2018.38 

g-C3N4/Ag@Ag3PO4/ 
NiFe LDH composite 1 Simulated sunlight None 5 0.31 mM in 2 h 0.154 Nayak et al., ACS 

Omega, 2018.39

g-C3N4/Au 
nanoparticle 
composite

0.2 300 W Xe lamp, > 400 
nm None 3 0.154 mM in 2 h 0.385

Chang et al., J. 
Hazardous 
Materials, 2018.40

g-C3N4/GO/BiFeO3 
composite 2.5 300 W Xe lamp, > 400 

nm None 2 0.07 mM in 1.3 h 0.020
Hu et al., 
Chemosphere, 
2019.41

g-C3N4 1.1 300 W Xe lamp None NA 0.34 mM in 4.5 h 0.069 Hu et al., 
Polymer, 2019.42

g-C3N4/HCl or phytic 
acid-doped PANI 
composite

1.1 350 W Xe lamp None NA 0.27 mM in 0.17 h 1.455
Wu et al, ACS 
Applied Materials 
Interfaces, 
2019.43

g-C3N4/Ag/Bi4O7 
composite 0.3 300 W Xe lamp, > 420 

nm None 3 0.34 mM in 0.83 h 1.365
Ye et al., J. 
Hazardous 
Materials, 2019.44

g-C3N4/palygorskite 
composite 0.5 300 W Xe lamp, > 400 

nm None 2 0.68 mM in 1.67 h 0.814
Zhang et al., 
Chemical Engr. 
J., 2019.45

g-C3N4/UiO-66 
composite 0.5 300 W Xe lamp None 2 0.17 mM in 0.67 h 0.516 Yi et al., Chemical 

Engr. J., 2019.46

g-C3N4, ammonia 
plasma modified 0.4 500 W Xe lamp, > 420 

nm None NA 0.75 mM in 2 h 0.933
Kang et al., ACS 
Applied Materials 
Interfaces, 
2019.47

g-C3N4, made under 
N2 atmosphere NA 300 W Xe lamp, > 420 

nm Bisphenol A 3.5 0.18 mM in 2 h NA Wang et al., 
Catalysis Today, 
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2019.48

g-C3N4/TaCxOy 
composite 1 500 W Xe lamp, > 420 

nm Citric acid NA 0.33 mM in 0.58 h 0.564
Zhang et al., 
Catalysis 
Communications, 
2019.49

g-C3N4/ZnS 
composite 0.8 500 W Xe lamp, > 420 

nm None NA 0.18 mM in 2 h 0.109
Wang et al., 
Applied Surface 
Science, 2019.50

g-C3N4/N doped 
TiO2/diatomite 
composite

2 500 W Xe lamp, > 400 
nm Glucose 2 0.08 mM in 4 h 0.010

Sun et al., 
Environmental 
Pollution, 2019.51

g-C3N4, B 
doped/BiVO4 
composite

2.5 150 W Xe lamp, > 420 
nm None 2 0.33 mM in 0.5 h 0.262

Babu et al., 
Inorganic 
Chemistry, 
2019.52

g-C3N4, hydroxyl 
modified 1 300 W Xe lamp None 2.3 0.39 mM in 0.75 h 0.513

Wang et al., 
Applied Surface 
Science, 2020.53

g-C3N4, sulfonic acid 
modified 0.5 300 W Xe lamp, >400 

nm Citric acid 2 0.16 mM in 0.67 h 0.487
Meng et al., 
Materials 
Research Bulletin, 
2020.54

g-C3N4/biochar 
composite 40 300 W Xe lamp, > 400 

nm None 2 0.48 mM in 4 h 0.003
Jin et al., RSC 
Advances, 
2020.55

N-doped carbon 0.4 500 W Xe lamp, > 420 
nm None 2 0.43 mM in 3.5 h 0.309

Li et al., Science 
of the Total 
Environment, 
2020.56

*NA: not available
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