Hydrogen bonding rather than cation bridging promotes graphene oxide

attachment to lipid membranes in the presence of heavy metals

Huimin Li^a, Haodong Ji^a, Ruijie Zhang^a, Wei Zhang^b, Baozhu Pan^c, Wen Liu^a;

Weiling Sun^{a,d,*}

^a College of Environmental Sciences and Engineering, Peking University, The Key

Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871,

China

^b Department of Plant, Soil and Microbial Sciences; Environmental Science, and Policy Program, Michigan State University, East Lansing, Michigan 48824, United States

^c State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China

^d State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China

*Corresponding author. E-mail: wlsun@pku.edu.cn (W.L. Sun)

Text S1. DFT calculation

All DFT calculations were performed using DMOL³ code in Materials Studio (v7.0).¹ The finite-sized model of graphene oxide (4×5 carbon ring) containing carboxyl group and amino group was used to investigate the interactions between the SSLBs and metal ions. Cu(II) surrounded by four water molecules ($[Cu(H_2O)_4]^{2+}$) was employed as the form of Cu(II) in aqueous solution,² wherease Fe (III), Ni (II) and Cd (II) were hydrated in $[M(H_2O)_6]^{n+}$ forms.³⁻⁵ Geometry optimization was performed using generalized gradient approximation (GGA) with Perdew, Burke and Enzerhof (PBE) functional.^{6, 7} The double numeric polarization (DNP) basis set was used to describe atomic orbitals.^{6, 8} Transition state (TS) method was chose for the DFT-D correction. The calculations were porformed in spin unrestricted mode and using fomal spin as initial. Effective core potentials treatment⁶ and medium quality were used. The convergence tolerance for optimization were 2×10^{-5} Ha (energy), 0.004 Ha/Å (Max. force), and 0.005 Å (Max. displacement). Thermal smearing was used and its value was set at 0.005 Ha. The conductor-like screening model (COSMO) using water solvent with dielectric constant of 75.84 was used to treat the solvation effects. During calculation, monitor bonding was activated in bond calculation dialog to enable the automatic recalculation of bonds.

The binding energies (E_{bd}) were calculated as follows:

$$E_{\rm bd}$$
 = $E_{\rm AB}$ – $E_{\rm A}$ – $E_{\rm B}$

(S1)

where E_{AB} is the total energy for the attachment of GO or the adsorption of metals to SSLBs, and E_A and E_B are the energies of adsorbent (SSLBs) and adsorbate (GO or metals), respectively. The more negative value of E_{bd} represents a stronger binding of GO or metal ions with the SSLBs.²

Text S2. Calculation of single bilayer adsorption of lipids

The theoretical single bilayer adsorption amount of lipid (A_1) was calculated using surface area of silica bead as follows:

$$A_l = m_l/m_s$$
$$m_l = 2S_s * M_l/(S_l * N_A)$$

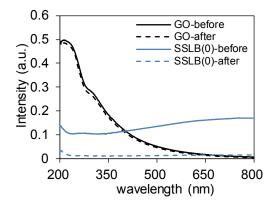
 $S_s = 4\pi r^2$

$$m_s = \rho * \frac{4}{3}\pi r^3$$

where A_1 is the adsorption amount of lipid on silica bead surface (mg/g), m_1 is the mass of bilayer lipid adsorbed on one silica bead (g), m_s is the mass of one silica bead (kg), S_s is the surface area of one silica bead (m²), M_1 is the molar mass of lipid (699 g/mol for DOTAP; 786 g/mol for DOPC; 801 g/mol for DOPS), S_1 is the area of headgroup for lipid (6.8 × 10⁻¹⁹ m²), N_A is the Avogadro constant (6.022 × 10²³/mol), ρ is the density of silica bead (2.65 × 10³ kg/m³), and r is the radius of silica bead (2.5 × 10⁻⁹ m).

Text S3. Adsorption of metals by GO

To further understand the interaction mechanisms of the binary systems, batch experiments were conducted to investigate the affinity of different metal ions with GO. Zeta potential of negatively GO (-29.9 mV) decreased as metal ions adsorbed on its surface. The zeta potential of GO-Fe(III) complex were -19.9 mV, followed by GO-Cu(II) (-22.2 mV), GO-Ni(II) (-24.7 mV) and GO-Cd(II) (-26.7 mV) (Fig. S9a). Moreover, the larger aggregation of GO (327-1650 nm) was formed in the presence of metals, compared with the size of GO without metals (Fig. S9b). The promotion effect of metals decreased as Fe(III) (1650 nm) > Cu(II) (390 nm) > Ni(II) (330 nm) > Cd(II) (327 nm) (Fig. S9b). The adsorption concentration of metal ions by GO (quantified by the decrease of metal concentration in solution) showed the order of Fe(III) $(9.91\mu M) > Cu(II)$ $(6.46 \mu M) > Ni(II)$ $(4.10 \mu M) > Cd(II)$ $(1.93 \mu M)$ (Fig. S9c). This is consistent with previous studies, which revealed that the adsorption affinity of GO to Cu(II) was higher than those to Ni(II) and Cd(II).⁹⁻¹¹ In addition, Fe(III) showed much stronger interaction with GO. Similarly, Yang et al. (2016)¹² also found that the aggregation of GO caused by trivalent cation was higher than divalent cations.


GO was abundant in various oxygen-containing groups, which could serve as potential adsorption sites for metals. Previous studies suggested carboxyl groups mainly contribute to metal adsorption,⁷ as well as carbonyl group (C=O), hydroxyl group (-OH) and epoxy group (C-O-C).^{6, 13, 14} DFT calculation was conducted to reveal the combination between metal ions and oxygen-containing functional groups on the GO surface (Table S8). Results showed that the strongest binding energy was found in carboxyl group (-78.97 to -116.21 kcal/mol), confirming with previous studies.^{6, 13-15} As for different heavy metals adsorbed by GO, the binding energy followed the same order of Fe(III) > Cu(II) > Ni(II) > Cd(II).

Text S4. XPS and FTIR analysis

The C 1s spectra were deconvoluted into four peaks at 284.8 eV, 286.8 eV, 287.9 eV and 288.8 eV, assigned to C-C, C-O, C=O and O-C=O, respectively.¹⁶⁻¹⁹ The O 1s spectra were deconvoluted into three peaks at 531.7 eV, 532.5 eV and 533.2 eV assigned to O-C=O, C-O, and C-OH/P-O-C, respectively. The P 2p peak was at 133.6 eV.16 The Cu 2p spectra were deconvoluted into three peaks at 934.5 eV, 954.3 eV and 944.1 eV, assigned to Cu 2p_{1/2}, Cu 2p_{3/2} and Cu 2p satellite, respectively.²¹⁻²³ The results of the XPS analysis are summarized in Table S17. When comparing the spectra of the SSLB(0)-GO sample with that of the SSLB(0) sample, a shift of 0.3 eV was observed for C-O in the C 1s spectra (Fig. S11a), and a shift of 0.4 eV for all three peaks in the O 1s spectra (Fig. S11b), indicating the contribution of ester and phosphate groups in the SSLB(0) to hydrogen bonding with the hydroxyl group of GO. When comparing the spectra of the SSLB(0)-Cu(II) sample with that of the SSLB(0) sample, a shift of 0.2 eV was observed for all three peaks in the O 1s and P 2p spectra (Fig. S11b and S11c), suggesting the binding of Cu(II) onto ester and phosphate group of SSLB(0). When comparing the spectra of the GO-Cu(II) sample with that of the GO sample, a shift of 0.2 eV was observed for C-O in the C 1s spectra (Fig. S11a), suggesting the binding of Cu(II) onto the carboxyl group of GO. Meanwhile, no obvious Cu 2p peaks were observed in the GO, SSLB(0) and GO-SSLB(0) samples, demonstrating free of Cu. The Cu 2p peaks in the spectra of GO-Cu(II), SSLB(0)-Cu(II) and SSLB(0)-GO-Cu(II) samples proved the loading of Cu(II). For the SSLB(0)-GO-Cu(II) sample, the C-O peak (287.0 eV) was the same with that of the GO-SSLB(0) sample, but shifted by 0.2 eV from that of the SSLB(0)-Cu(II) sample (Fig. S11a). Similarly, the C-OH/ P-O-C (533.5 eV) peak of the SSLB(0)-GO-Cu(II) sample was the same with that of the GO-SSLB(0) sample, but shifted by 0.2 eV from that of the SSLB(0)-Cu(II) sample (Fig. S11b). The similarity of the spectra of the SSLB(0)-GO-Cu(II) with that of the SSLB(0)-GO sample and its difference from the spectra of the SSLB(0)-Cu(II) sample for key functional groups associated with C-O and C-OH/ P-O-C (ester and phosphate groups) suggested that SSLB(0) prefers to binding with GO by hydrogen bonding rather than to Cu(II) via cation bridging in the SSLB(0)-GO-Cu(II). This also further confirmed the interaction mechanism revealed by the DFT calculation and batch experiments.

For FTIR spectra, the peak around 1050, 1369, 1618 and 1720 cm⁻¹ were assigned to C-O, O-C=O, C=C and C=O.^{16, 17, 24-26} The band centered at 771, 1016 and 1280 cm⁻¹ were due to P-O-C and P=O from phosphate group in the SSLB(0) sample.^{27, 28} The peak at 1397 cm⁻¹ resulted from the C-N of amino groups in the SSLBs.²⁹ As shown in FTIR spectra (Fig. S11e), for the GO-SSLB(0) sample, hydrogen bonding was confirmed by the shift of the -OH bond of GO from 3345 cm⁻¹ to 3359 cm⁻¹ and the O-C=O /C=O bond of SSLB(0) from 1360/1727 cm⁻¹ to 1353/1720 cm⁻¹. For the SSLB(0)-Cu(II) sample, the band at 1360 cm⁻¹ (O-C=O) shifted to 1355 cm⁻¹ was attributed to the binding of Cu(II) onto SSLB(0) through ester group. For the GO-Cu(II) sample, the band at 1369 cm⁻¹ (O-C=O) for the GO

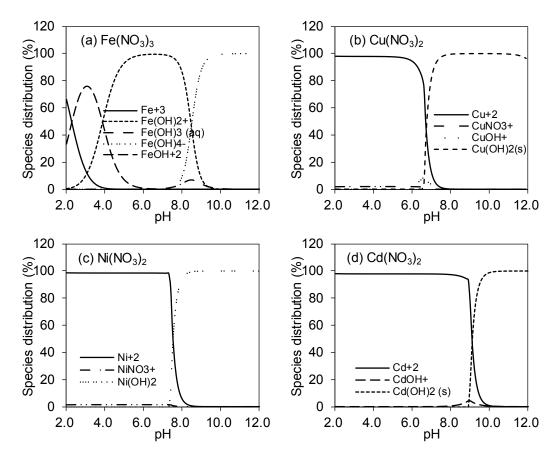
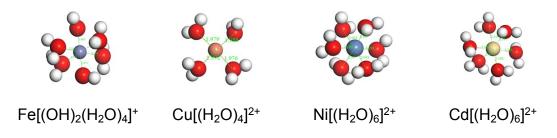
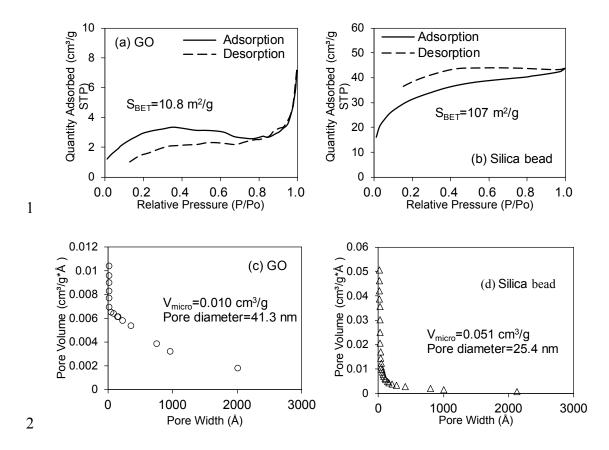
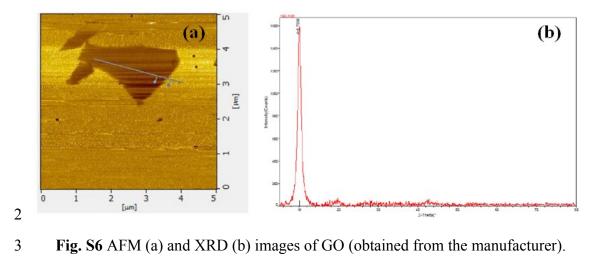

shifted to 1351 cm⁻¹, suggesting the binding between Cu (II) and carboxyl groups in GO. The FTIR spectra did not reveal any distinguishable difference between the SSLB(0)-GO-Cu(II), SSLB(0)-GO, and SSLB(0)-Cu(II) samples, and therefore could not be used to identify dominant binding mechanism for the ternary system.

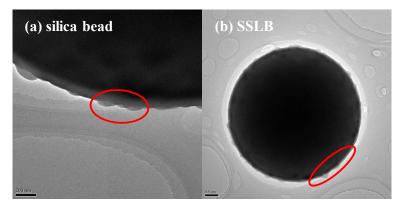
Fig. S1 UV-Vis absorbance of the GO and SSLB(0) suspensions before (solid line) and after (dash line) centrifugation at 2000 rpm for 5min.

Fig. S2 Optimized structures of SSLB(+) (a), SSLB(0) (b), SSLB(-) (c) and GO (d).

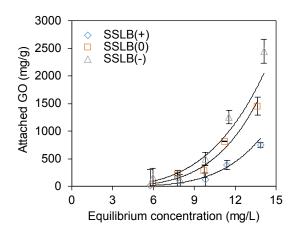
Fig. S3 Speciation distribution of heavy metals calculated using Visual MINTEQ version 3.0.


Fig. S4 Optimized structures of hydrated heavy metals.


3 Fig. S5 Surface area and pore size distribution of GO and silica beads.

4



- 2
- 3 Fig. S7 TEM images of silica bead and SSLBs (rough silica surface protruding out of 4 the lipid bilayer).
- 5

2

3 Fig.S8 The adsorption isotherms of GO onto SSLBs (the solid lines are the Freundlich

- 4 model).
- 5

Adsorbent	Freundlich model ($Q = K_f \times C_e$)							
	$K_{\rm f}(({\rm mg/g})/({\rm mg/L})^{1/n})$	1/n	\mathbb{R}^2					
SSLB(+)	0.004	4.691	0.892					
SSLB(0)	0.029	4.165	0.957					
SSLB(-)	0.154	3.587	0.834					

6

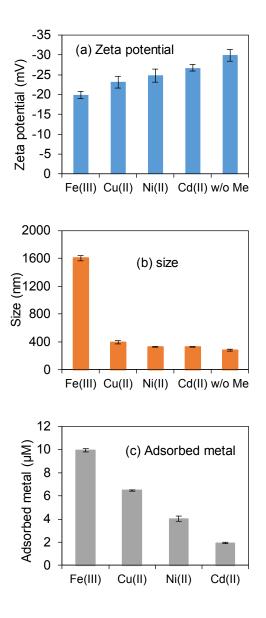
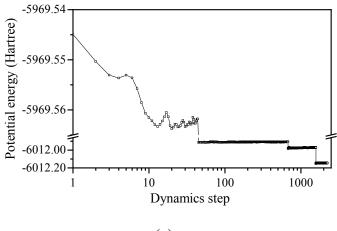
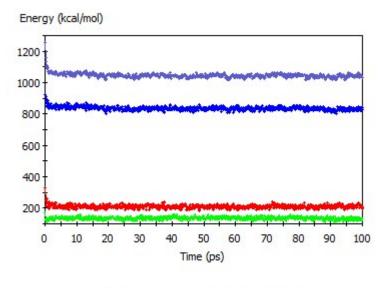
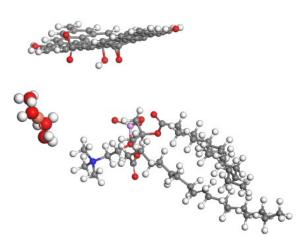
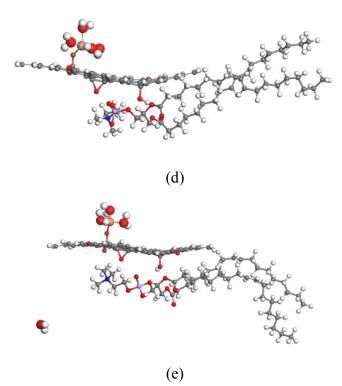




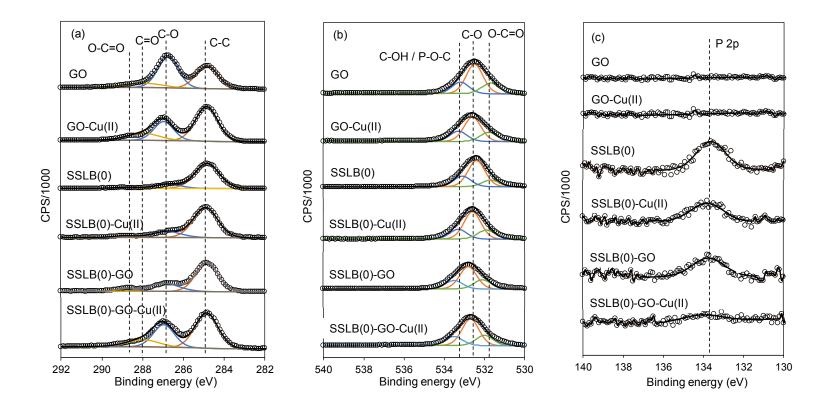
Fig. S9 Zeta potential (a) and size (b) of GO and the adsorbed metal by GO (c) (GO concentration of 10 mg/L, initial metal concentration of 10 μ M, 0.01M NaNO₃).



(a)



(b)



(c)

S18

Fig. S10 Molecular dynamic simulation of the interactions between Cu(II), GO and SSLB(0) (Potential energies at different dynamic steps calculated using DMOL³ code (a); Forcite dynamic energies at different simulation times (b); Snapshots of the initial state (c) and final states calculated by DMOL³ (d) and Forcite modules (e).

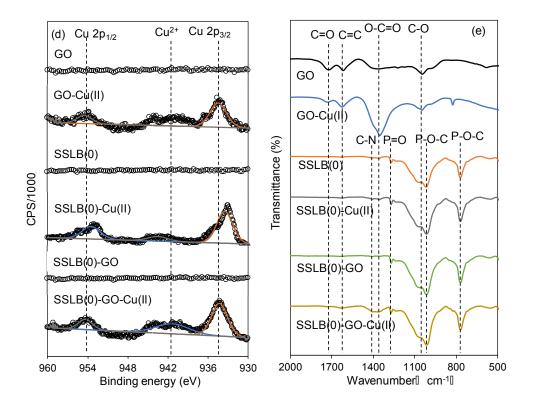


Fig. S11 High resolution XPS C1s (a), O 1s (b), P 2p (c), Cu 2p (d) and FTIR (e) spectra of GO, GO-Cu(II), SSLB(0), SSLB(0)-Cu(II), SSLB(0)-GO and SSLB(0)-GO-Cu(II).

Binding gro	oup in	Tota	al energy (E, H	artree)	Binding group	Total energy (<i>E</i> , Hartree)	Binding site	
SSLB(+)		SSLB(+)	GO	SSLB(+)	in SSLB(+)	Total energy (E, Hartiee)	Binding site	
	E1	-2002.246	-2786.415	-4788.678	-10.65		Hydrogen bonding between C=O of -COO- in SSLB(+) and -OH on the edge of GO	
Ester group	E2	-2002.246	-2786.415	-4788.680	-12.17		Hydrogen bonding between C-O of -COO- in SSLB(+) and -OH on the edge of GO	
	E3	-2002.246	-2786.415	-4788.693	-19.89		Hydrogen bonding between C=O of -COO- in SSLB(+) and -OH on the basal plane of GO	

 Table S1 DFT calculation results for the adsorption of GO by SSLB(+).

Binding group in	Total energy (<i>E</i> , Hartree)			Binding group		Dinding site	
SSLB(+)	SSLB(+)	GO	SSLB(+)	in SSLB(+)	Total energy (<i>E</i> , Hartree)	Binding site	
E4	-2002.246	-2786.415	-4788.703	-26.21		Hydrogen bonding between C–O of –COO– in SSLB(+) and –OH on the basal plane of GO	

Binding gr	oup in	Tota	al energy (E, I	Hartree)	Binding energy	Structure	Dinding site
SSLB((0)	SSLB(0) GO GO-SSLB(0)		(kcal/mol)	(bond length, Å)	Binding site	
	E1	-2723.099	-2786.415	-5509.607	-58.25		Hydrogen bonding between C=O of -COO- in SSLB(0) and -OH on the edge of GO
Ester group	E2	-2723.099	-2786.415	-5509.601	-54.26		Hydrogen bonding between C–O of –COO– in SSLB(0) and –OH on the edge of GO
	E3	-2723.099	-2786.415	-5509.613	-62.04		Hydrogen bonding between C=O of -COO- in SSLB(0) and -OH on the basal plane of GO
	E4	-2723.099	-2786.415	-5509.615	-62.90	Billing and a second and a seco	Hydrogen bonding between C-O of -COO- in SSLB(0) and -OH on

Table S2 DFT calculation results for the adsorption of GO by SSLB(0).

Binding gr	roup in	Tota	al energy (E, H	Hartree)	Binding energy	Structure	Din din a cita
SSLB(0)		SSLB(0) GO GO-SSLB(0)		- (kcal/mol)	(bond length, Å)	Binding site	
							the basal plane of GO
	P1	-2723.099	-2786.415	-5509.602	-54.90		Hydrogen bonding between P-O of –PO ₄ - and –OH on the edge of GO
Phosphate	Р2	-2723.099	-2786.415	-5509.598	-52.52	1925 - 1922 - 1924 - 19	Hydrogen bonding between P-O of $-PO_4^-$ and $-OH$ on the basal plane of GO
group	Р3	-2723.099	-2786.415	-5509.601	-54.19		Hydrogen bonding between P=O of -PO ₄ - and -OH on the edge of GO
	Р4	-2723.099	-2786.415	-5509.606	-57.69		Hydrogen bonding between P=O of –PO ₄ - and –OH on the basal plane of GO

Binding g	Binding group in		al energy (E, I	Hartree)	Binding energy	Structure	Dinding site
SSLB	8(-)	SSLB(-)	GO GO-SSLB(-)		- (kcal/mol)	(bond length, Å)	Binding site
	A1	-2793.321	-2786.415	-5579.842	-66.43		Hydrogen bonding between NH ₃ and CO inCOO ⁻ of GO
Amino group		-58.54		Hydrogen bonding between -NH ₃ and C=O in -COO ⁻ of GO			
	A3	-2793.321	-2786.415	-5579.813	-48.31		Hydrogen bonding between -NH ₃ and C=O of GO
	A4	-2793.321	-2786.415	-5579.813	-48.16	1.767	Hydrogen bonding between NH ₃ and C-O-C of GO

 Table S3 DFT calculation results for the adsorption of GO by SSLB(-).

Binding gro	oup in	Tota	al energy (E, H	Hartree)	Binding energy	Structure	Dinding site
SSLB(-	-)	SSLB(-)	GO	GO-SSLB(-)	(kcal/mol)	(bond length, Å)	Binding site
	A5	-2793.321	-2786.415	-5579.803	-41.95	and the second s	Hydrogen bonding between -NH ₃ and -OH on the edge of GO
	A6	-2793.321	-2786.415	-5579.815	-49.70	a to the state of	Hydrogen bonding between -NH ₃ and -OH on the basal plane of GO
Ester group	E1	-2793.321	-2786.415	-5579.838	-64.15		Hydrogen bonding between C=O of -COO- in SSLB(-) and -OH on the edge of GO

Binding gro	oup in	Tota	al energy (E, I	Hartree)	Binding energy	Structure	Binding site	
SSLB(-	-)	SSLB(-)	GO	GO-SSLB(-)	(kcal/mol)	(bond length, Å)	Diffuling site	
	E2	-2793.321	-2786.415	-2786.415258	-54.71		Hydrogen bonding between C-O of -COO- in SSLB(-) and -OH on the edge of GO	
	E3	-2793.321	-2786.415	-5579.841	-65.67		Hydrogen bonding between C=O of -COO- in SSLB(-) and -OH on the basal plane of GO	
	E4	-2793.321	-2786.415	-5579.840	-65.36		Hydrogen bonding between C-O of -COO- in SSLB(-) and -OH on the basal plane of GO	
Carboxyl group	C1	-2793.321	-2786.415	-5579.816	-49.94		Hydrogen bonding between C-O of -COO ⁻ in SSLB(-) and-OH on the edge of GO	

Binding gro	oup in	Tota	al energy (E, I	Hartree)	Binding energy	Structure	Dinding site
SSLB(-	-)	SSLB(-)	GO	GO-SSLB(-)	(kcal/mol)	(bond length, Å)	Binding site
	C2	-2793.321	-2786.415	-5579.821	-53.25	4513 + + + + + + + + + + + + + + + + + + +	Hydrogen bonding between C=O of -COO ⁻ in SSLB(-) and -OH on the edge of GO
	C3	-2793.321	-2786.415	-5579.814	-48.77	A A A A A A A A A A A A A A A A A A A	Hydrogen bonding between C–O of –COO ⁻ in SSLB(-) and –OH on the basal plane of GO
	C4	-2793.321	-2786.415	-5579.813	-48.43	A Start Book & Start Sta	Hydrogen bonding between C=O of -COO ⁻ in SSLB(-) and -OH on the basal plane of GO
Phosphate group	P1	-2793.321	-2786.415	-5579.822	-54.10		Hydrogen bonding between P-O of $-PO_4^-$ and $-OH$ on the edge of GO

Binding group in	Tota	al energy (E, H	Iartree)	Binding energy	Structure	Dinding site
SSLB(-)	SSLB(-)	GO	GO-SSLB(-)	(kcal/mol)	(bond length, Å)	Binding site
Р2	-2793.321	-2786.415	-5579.826	-56.07		Hydrogen bonding between P-O of $-PO_4^-$ and $-OH$ on the basal plane of GO
Р3	-2793.321	-2786.415	-5579.828	-57.65		Hydrogen bonding between $P=O \text{ of } -PO_4^-$ and $-OH \text{ on }$ the edge of GO
P4	-2793.321	-2786.415	-5579.840	-64.98		Hydrogen bonding between P=O of $-PO_4^-$ and $-OH$ on the basal plane of GO

	N	PE	Charge	$R_I(\text{\AA})$	$R_H(\text{\AA})$	log <i>K_{H2O}</i>	Charge/R _I
Fe (III)	6	1.83	+3	0.75	4.57	-2.19	4.00
Cu (II)	4	1.90	+2	0.72	4.19	-7.50	2.78
Ni (II)	6	1.91	+2	0.83	4.04	-9.90	2.41
Cd (II)	6	1.69	+2	0.97	4.26	-10.10	2.06

Table S4 Physicochemical properties of the studied metals³⁰⁻³⁴

N: number of waters of hydration

PE: Pauling electronegativity

 R_I : ionic radius

 R_H : hydrated radius

 $Log K_{H2O}$: log of the fist hydrolysis constant

Binding		Total ener	gy (E, Hart		Binding energy	Structure
group	М	etal	SSLB(+)	Metal-SSLB ¹ (+)	(kcal/mol)	(bond length, Å)
	Fe(III)	-581.037	-2002.246	5 -2583.404	-76.19	
Ester	Cu(II)	-502.678	-2002.246	5 -2505.028	-65.23	
group	Ni(II)	-629.160	-2002.246	5 -2631.498	-57.81	
	Cd(II)	-625.890	-2002.246	5 -2628.222	-54.10	

Table S5 DFT calculation results for the adsorption of metals by SSLB(+).

	Total energy (E, Hartree) Metal SSL P Binding energy					Structure		
Binding site	Metal		SSLB(0)	Metal-SSLB (0)	(kcal/mol)		Structure (bond length, Å)	
Phosphate group	Fe(III)	-581.037	-2723.099	-3304.231	-59.85	A CONTRACTOR		
	Cu(II)	-502.678	-2723.099	-3225.852	-46.77	Restanting to	the the	
	Ni(II)	-629.160	-2723.099	-3352.328	-43.19			
	Cd(II)	-625.890	-2723.099	-3349.051	-39.07			
	Fe	e(III) -58	1.037 -272	23.099 -330	4.195 -3'	7.16	2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 	
Ester		u(II) -50	2.678 -272	23.099 -322	5.823 -28	8.85	 	
		li(II) -62	9.160 -272	23.099 -335	2.299 -2:	5.38	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
	C	d(II) -62	5.890 -272	23.099 -334	9.027 -2.	3.93	& & 	

Table S6 DFT calculation results for the adsorption of metals by SSLB(0).

Binding	Total en	ergy (<i>E</i> , Har	Binding energy		Structure	
site	Metal	SSLB(-)	Metal-SSLB (-)	(kcal/mol)	(bond length, Å)	
Carboxyl group	Fe(III) -581.037	7 -2793.321	-3374.461	-64.88	Contraction of the second seco	
	Cu(II) -502.678	3 -2793.321	-3296.075	-47.69		
	Ni(II) -629.160) -2793.321	-3422.540	-37.02		
	Cd(II) -625.890) -2793.321	-3419.268	-35.77	Contraction of the second	
Phosphate group	Fe(III) -581.037	-2793.321	-3374.462	-65.55		
	Cu(II) -502.678	3 -2793.321	-3296.088	-55.56		
	Ni(II) -629.160) -2793.321	-3422.563	-51.67	6 102 + + + + + + + + + + + + + + + + + + +	
	Cd(II) -625.890) -2793.321	-3419.284	-45.72		
Est		81.037 -279	3.321 -3374.4	49 -57.44		
gro		02.678 -279	3.321 -3296.0	46 -29.4		

 Table S7 DFT calculation results for the adsorption of metals by SSLB(-).

Binding		Total ener	$\frac{e_{gy}(E, \text{Hartree})}{M + 1 \text{ SGLP}} Binding energy}$			Structure
site Metal		SSLB(-) Metal-SSLB		(kcal/mol)	(bond length, Å)	
	Ni(II)	-629.160	-2793.321	-3422.519	-29.06	
	Cd(II)	-625.890	-2793.321	-3419.248	-23.22	
	Fe(III)	-581.037	-2793.321	-3374.442	-52.68	
Amino	Cu(II)	-502.678	-2793.321	-3296.030	-19.41	
group	Ni(II)	-629.160	-2793.321	-3422.510	-18.11	
	Cd(II)	-625.890	-2793.321	-3419.240	-17.84	

Binding		Total ener	rgy (E, Harti	ree)	-Binding energy	Structure
group	Metal		GO	Metal-GO	(kcal/mol)	(bond length, Å)
-COO-	Fe(III)	-581.037	-2786.415	-3367.637	-116.21	
	Cu(II)	-502.678	-2786.415	-3289.259	-103.76	
	Ni(II)	-629.160	-2786.415	-3415.724	-93.48	
	Cd(II)	-625.890	-2786.415	-3412.431	-78.97	Concession and the second seco
-C=O	Fe(III)	-581.037	-2786.415	-3367.622	-106.39	
	Cu(II)	-502.678	-2786.415	-3289.245	-95.14	
	Ni(II)	-629.160	-2786.415	-3415.701	-79.22	
	Cd(II)	-625.890	-2786.415	-3412.422	-73.75	
С-О-С	Fe(III)	-581.037	-2786.415	-3367.618	-104.18	CO MARTING COLOR

 Table S8 DFT calculation results for the adsorption of metals by GO.

Binding	Tota	al energy (E, Hart	ree)	-Binding energy	Structure
group	Metal	GO	Metal-GO	(kcal/mol)	(bond length, Å)
	Cu(II) -502	2.678 -2786.415	-3289.242	-93.39	
	Ni(II) -629	9.160 -2786.415	-3415.724	-93.62	Contraction of the second
	Cd(II) -62:	5.890 -2786.415	-3412.422	-73.79	and the second s
	Fe(III) -58	1.037 -2786.415	-3367.601	-93.20	
С-ОН	Cu(II) -502	2.678 -2786.415	-3289.225	-82.52	
(edge)	Ni(II) -629	9.160 -2786.415	-3415.687	-70.17	
	Cd(II) -62:	5.890 -2786.415	-3412.409	-65.32	Control of the second s
	Fe(III) -58	1.037 -2786.415	-3367.614	-101.66	CP-ED ECTERCERCE ECTER
C-OH (basal	Cu(II) -502	2.678 -2786.415	-3289.233	-87.76	
plane)	Ni(II) -629	9.160 -2786.415	-3415.696	-75.94	Contraction of the contraction o

Binding	Total ener	r <u>gy (E</u> , Hartı	ree)	-Binding energy	Structure
group		GO	Metal-GO	(kcal/mol)	(bond length, Å)
	Cd(II) -625.890	-2786.415	-3412.422	-73.25	Concernent and the second

Rinding way	Total energy (E, Hartree)			Binding energy	Structure	Dinding site
Binding way	GO-Metal SSLBs SSLB-GO-metal		(kcal/mol)	(bond length, Å)	Binding site	
SSLB(+)–[GO-Fe]	-3367.637	-2002.246	-5370.160	-173.74	Conception of the second	Hydrogen bonding between C-O of -COO- in SSLB(+) and -OH on the basal plane of GO
SSLB(+)–[GO-Cu]	-3289.259	-2002.246	-5291.750	-154.45	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Hydrogen bonding between C-O of -COO- in SSLB(+) and -OH on the basal plane of GO
SSLB(+)–[GO-Ni]	-3415.724	-2002.246	-5418.211	-151.43		Hydrogen bonding between C-O of -COO- in SSLB(+) and -OH on the basal plane of GO

 Table S9 DFT calculation results for the adsorption of GO-metal by SSLB(+).

Dinding way	Total energy (E, Hartree)			Binding energy	Structure	Binding site	
Binding way	GO-Metal SSLBs SSLB-GO-metal		(kcal/mol)	(bond length, Å)			
SSLB(+)–[GO-Cd]	-3412.431	-2002.246	-5414.917	-151.12	and the second s	Hydrogen bonding between C-O of -COO- in SSLB(+) and -OH on the basal plane of GO	
[GO-Fe]–SSLB(+)	-3367.637	-2002.246	-5370.152	-168.59		Coordination between Fe(III) and C–O in –COO– of SSLB(+)	
[GO-Cu]–SSLB(+)	-3289.259	-2002.246	-5291.740	-147.94		Coordination between Cu(II) and C–O in –COO– of SSLB(+)	

D' 1'	Total energy (E, Hartree)			Binding energy	Structure	
Binding way	GO-Metal SSLBs SSLB-GO-metal		(kcal/mol)	(bond length, Å)	Binding site	
[GO-Ni]–SSLB(+)	-3415.724	-2002.246	-5418.200	-144.57		Coordination between Ni(II) and C–O in –COO– of SSLB(+)
[GO-Cd]–SSLB(+)	-3412.431	-2002.246	-5414.900	-140.30		Coordination between Cd(II) and C-O in -COO- of SSLB(+)

D' 1' 1	Т	Total energy (E, Hartree)			Structure		
Binding mode	GO-Metal	O-Metal SSLBs SSLB-GO-metal		– (kcal/mol)	(bond length, Å)	Binding site	
SSLB(0)–[GO-Fe]	-3367.637	-2723.099	-6090.962	-141.56	an a	Hydrogen bonding between C–O of –COO– in SSLB(0 and –OH on the basal plane of GO	
SSLB(0)–[GO-Cu]	-3289.259	-2723.099	-6012.570	-133.25		Hydrogen bonding between C–O of –COO– in SSLB(C and –OH on the basal plane of GO	
SSLB(0)–[GO-Ni]	-3415.724	-2723.099	-6139.032	-131.44		Hydrogen bonding between C-O of -COO- in SSLB(C and -OH on the basal plane of GO	
SSLB(0)–[GO-Cd]	-3412.431	-2723.099	-6135.734	-127.89		Hydrogen bonding between C–O of –COO– in SSLB(C and –OH on the basal plane of GO	

 Table S10 DFT calculation results for the adsorption of GO-metal by SSLB(0).

Dinding mode	Te	otal energy (E,	Hartree)	Binding energy	Structure	Dinding site	
Binding mode	GO-Metal SSLBs SSLB-GO-metal		– (kcal/mol)	(bond length, Å)	Binding site		
[GO-Fe]–SSLB(0)	-3367.637	-2723.099	-6090.957	-138.44		Coordination between Fe(III) and P-O in –PO ₄ - of SSLB(0)	
[GO-Cu]–SSLB(0)	-3289.259	-2723.099	-6012.567	-131.17		Coordination between Cu(II) and P-O in –PO ₄ - of SSLB(0)	
[GO-Ni]–SSLB(0)	-3415.724	-2723.099	-6139.022	-124.89		Coordination between Ni(II) and P-O in –PO ₄ ⁻ of SSLB(0)	
[GO-Cd]–SSLB(0)	-3412.431	-2723.099	-6135.729	-124.82		Coordination between Cd(II) and P-O in –PO ₄ - of SSLB(0)	

Dia line and le	Total energy (E, Hartree)			Binding energy	Structure	Dinding site	
Binding mode	GO-Metal	Metal SSLBs SSLB-GO-metal		(kcal/mol)	(bond length, Å)	Binding site	
SSLB(-)–[GO-Fe]	-3367.637	-2793.321	-6161.232	-171.77		Hydrogen bonding between C=O of -COO- in SSLB(-) and -OH on the basal plane of GO	
SSLB(-)–[GO-Cu]	-3289.259	-2793.321	-6082.815	-147.97		Hydrogen bonding between C=O of -COO- in SSLB(-) and -OH on the basal plane of GO	
SSLB(-)–[GO-Ni]	-3415.724	-2793.321	-6209.273	-143.04	A CONTRACTOR	Hydrogen bonding between C=O of -COO- in SSLB(-) and -OH on the basal plane of GO	
SSLB(-)–[GO-Cd]	-3412.431	-2793.321	-6205.973	-139.17	2 - C - C - C - C - C - C - C - C - C -	Hydrogen bonding between of C=O of -COO- in SSLB(-) and -OH on the basal plane of GO	

 Table S11 DFT calculation results for the adsorption of GO-metal by SSLB(-).

Dinding mode	Te	otal energy (E,	Hartree)	Binding energy	Structure	Binding site	
Binding mode	GO-Metal	SSLBs	SSLB-GO-metal	(kcal/mol)	(bond length, Å)		
[GO-Fe]–SSLB(-)	-3367.637	-2793.321	-6161.202	-153.14		Coordination between Fe(III) and P-O in –PO ₄ - of SSLB(-)	
[GO-Cu]–SSLB(-)	-3289.259	-2793.321	-6082.805	-141.70		Coordination between Cu(II) and P-O in –PO ₄ ⁻ of SSLB(-)	
[GO-Ni]–SSLB(-)	-3415.724	-2793.321	-6209.2 6	-131.98		Coordination between Ni(III) and P-O in –PO ₄ - of SSLB(-)	
[GO-Cd]–SSLB(-)	-3412.431	-2793.321	-6205.960	-130.65		Coordination between Cd(II) and P-O in –PO ₄ - of SSLB(-)	

SSLBs	Metals		Adsorption	groups	
SSLDS	Metals	Ester	Phosphate	Carboxyl	Amino
	Fe(III)	-76.19	-	-	-
	Cu(II)	-65.23	-	-	-
SSLB(+)	Ni(II)	-57.81	-	-	-
	Cd(II)	-54.10	-	-	-
	Fe(III)	-37.16	-59.85	-	-
SSLB(0)	Cu(II)	-28.85	-46.77	-	-
SSLD(0)	Ni(II)	-25.38	-43.19	-	-
	Cd(II)	-23.93	-39.07	-	-
	Fe(III)	-57.44	-65.55	-64.88	-52.86
SSI D(_)	Cu(II)	-29.49	-55.56	-47.69	-19.41
SSLB(-)	Ni(II)	-29.06	-51.67	-37.02	-18.11
	Cd(II)	-24.40	-45.72	-35.77	-17.84

Table S12 Binding energies for the adsorption of metals onto the SSLBs (kcal/mol).

	Metals	SSLB(+)	SSLB(0)	SSLB(-)
	Fe(III)	-173.74	-141.56	-171.77
SSI Da [CO matal]	Cu(II)	-154.45	-133.25	-147.97
SSLBs–[GO-metal]	Ni(II)	-151.43	-131.44	-143.04
	Cd(II)	-151.12	-127.89	-139.17
	Fe(III)	-168.59	-138.44	-153.14
[CO motal] SSI Da	Cu(II)	-147.94	-131.17	-141.7
[GO-metal]–SSLBs	Ni(II)	-144.57	-124.89	-131.98
	Cd(II)	-140.3	-124.82	-130.65

Table S13 Binding energies for the co-attachment of GO and metals by SSLBs (kcal/mol)

	Г	Total energy	(E, Hartree)		-Binding energy			
Systems	SSLB(0)	GO	Cu	After (kcal/mol)		Structure	Binding site	
GO-SSLB(0)	-2722.509	-2785.666	_	-5508.223	-30.20		Hydrogen bonding between C–O of –COO– in SSLB(0) and –OH on the edge of GO	
SSLB(0)-Cu(II)	-2722.509	_	-1944.823	-4667.435	-64.29	٢٠ ٩ يې وي وي ٩ يې وي	Coordination between Cu(II) and P-O of $-PO_4^-$ in SSLB(0)	
GO-Cu(II)	_	-2785.666	-1944.823	-4730.926	-273.69		Coordination between Cu(II) and C-O of -COO ⁻ in GO	
SSLB(0)–[GO-Cu(II)]	-2722.509	-2785.666	-1944.823	-7453.513	-322.65		Hydrogen bonding between C–O of –COO– in SSLB(0) and –OH on the basal plane of GO	
[GO-Cu(II)]–SSLB(0)	-2722.509	-2785.666	-1944.823	-7453.451	-284.04		Coordination between Cu(II) and P-O in –PO ₄ - of SSLB(0)	

Table S14 Gaussian calculation results for interactions between GO, SSLB(0) and Cu(II).

System	Total ener			
	Considering the van	Without considering the	ΔE (kcal/mol)	
	der Waals dispersions	van der Waals dispersions		
GO-SSLB(0)	-5508.223	-5507.90	-202.69	
SSLB(0)-Cu(II)	-4667.435	-4667.27	-103.54	
GO-Cu(II)	-4730.926	-4730.75	-110.44	
SSLB(0)–[GO-Cu]	-7453.513	-7453.07	-277.99	
[GO-Cu]–SSLB(0)	-7453.451	-7453.18	-170.06	

Table S15 Gaussian calculation results for interactions between GO, SSLB(0) andCu(II) with and without considering the van der Waals dispersions.

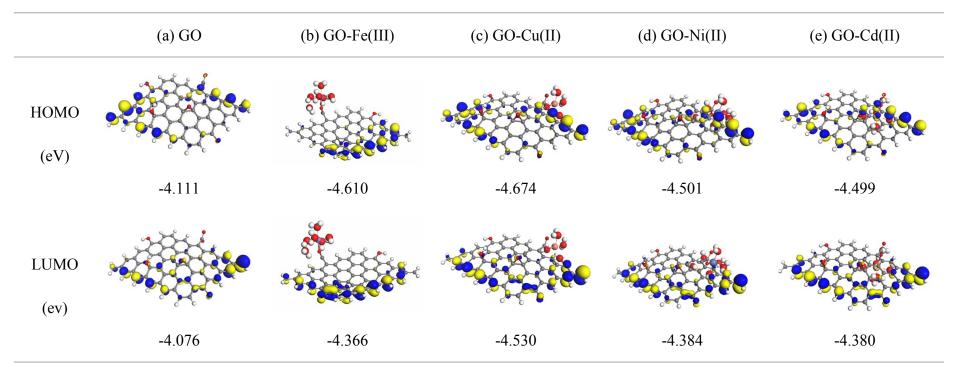


Table S16 HOMO and LUMO orbitals and energy levels of GO and GO-metals.

Position (eV)	C 1s			O 1s		P 2p		Cu 2p			
	C-C	C-0	С=О	0-C=0	0-C=0	C-0	С-ОН/ Р-О-С	-	Cu 2p _{1/2}	Cu ²⁺	Cu 2p _{3/2}
GO	284.8	286.7	287.9	288.8	531.7	532.5	533.2	-	-	-	-
SSLB(0)	284.8	286.7	-	288.8	531.7	532.4	533.1	133.6	-	-	-
GO-Cu(II)	284.8	286.9	287.9	288.8	531.8	532.6	533.3	-	934.5	944.5	954.5
SSLB(0)-GO	284.8	287.0	287.9	288.8	532.1	532.8	533.5	133.7	-	-	-
SSLB(0)-Cu(II)	284.8	286.8	-	288.9	531.9	532.6	533.3	133.8	933.5	943.5	953.5
SSLB(0)-GO-Cu(II)	284.8	287.0	287.9	288.8	532.0	532.8	533.5	134.0	934.3	941.3	954.3

Table S17 Band shift of GO, SSLB (0), GO-Cu(II), SSLB(0)-GO, SSLB(0)-Cu(II) and SSLB(0)-GO-Cu(II) in XPS spectra.

References

- J. M. Luo, X. B. Luo, J. Crittenden, J. H. Qu, Y. H. Bai, Y. Peng and J. H. Li, Removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO₂), *Environ. Sci. Technol.*, 2015, **49**, 11115-11124.
- 2 S. Li, F. Wang, W. Pan, X. Yang, Q. Gao, W. Sun and J. Ni, Molecular insights into the effects of Cu(II) on sulfamethoxazole and 17β-estradiol adsorption by carbon nanotubes/CoFe2O4 composites, *Chem. Eng. J.*, 2019, **373**, 995-1002.
- 3 G. Y. Yuan, Y. Tian, J. Liu, H. Tu, J. L. Liao, J. J. Yang, Y. Y. Yang, D. Q. Wang and N. Liu, Schiff base anchored on metal-organic framework for Co (II) removal from aqueous solution, *Chem. Eng. J.*, 2017, **326**, 691-699.
- 4 K. Yang, B. Chen, X. Zhu and B. Xing, Aggregation, adsorption, and morphological transformation of graphene oxide in aqueous solutions containing different metal cations, *Environ. Sci. Technol.*, 2016, **50**, 11066-11075.
- 5 X. Ren, Q. Wu, H. Xu, D. Shao, X. Tan, W. Shi, C. Chen, J. Li, Z. Chai, T. Hayat and X. Wang, New insight into GO, cadmium(II), phosphate interaction and its role in GO colloidal behavior, *Environ. Sci. Technol.*, 2016, **50**, 9361-9369.
- 6 S. Yang, C. Chen, Y. Chen, J. Li, D. Wang, X. Wang and W. Hu, Competitive adsorption of PbII, NiII, and SrII ions on graphene oxides: A combined experimental and theoretical study, *ChemPlusChem*, 2015, **80**, 480-484.
- 7 C. Z. Wang, J. H. Lan, Q. Y. Wu, Y. L. Zhao, X. K. Wang, Z. F. Chai and W. Q. Shi, Density functional theory investigations of the trivalent lanthanide and actinide extraction complexes with diglycolamides, *Dalton T.*, 2014, 43, 8713-8720.
- 8 E. V. Basiuk, L. Huerta and V. A. Basiuk, Noncovalent bonding of 3d metal(II) phthalocyanines with single-walled carbon nanotubes: A combined DFT and XPS study, *Appl. Surf. Sci.*, 2019, **470**, 622-630.
- 9 R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann, A. Gagor, B. Feist and R. Wrzalik, Adsorption of divalent metal ions from aqueous solutions using graphene oxide, *Dalton Trans.*, 2013, 42, 5682-5689.
- 10 D. Gu and J. B. Fein, Adsorption of metals onto graphene oxide: Surface complexation modeling and linear free energy relationships, *Colloids Surf. A Physicochem. Eng. Asp.*, 2015, **481**, 319-327.
- 11 W. Peng, H. Li, Y. Liu and S. Song, A review on heavy metal ions adsorption from water by graphene oxide and its composites, *J. Mol. Liq.*, 2017, 230, 496-504.
- 12 K. Yang, B. Chen, X. Zhu and B. Xing, Aggregation, adsorption, and morphological transformation of graphene oxide in aqueous solutions containing different metal cations, *Environ. Sci. Technol.*, 2016, **50**, 11066-11075.
- 13 A. S. Dobrota, I. A. Pašti and N. V. Skorodumova, Oxidized graphene as an

electrode material for rechargeable metal-ion batteries – a DFT point of view, *Electrochim. Acta*, 2015, **176**, 1092-1099.

- 14 S. Yu, X. Wang, Y. Ai, Y. Liang, Y. Ji, J. Li, T. Hayat, A. Alsaedi and X. Wang, Spectroscopic and theoretical studies on the counterion effect of Cu(ii) ion and graphene oxide interaction with titanium dioxide, *Environ. Sci.: Nano*, 2016, 3, 1361-1368.
- 15 X. Wang, Z. Chen and S. Yang, Application of graphene oxides for the removal of Pb(II) ions from aqueous solutions: Experimental and DFT calculation, *J. Mol. Liq.*, 2015, **211**, 957-964.
- 16 J. Wei, W. Zhang, W. Pan, C. Li and W. L. Sun, Experimental and theoretical investigations on Se(iv) and Se(vi) adsorption to UiO-66-based metal–organic frameworks, *Environ. Sci.: Nano*, 2018, **5**, 1441-1453.
- 17 J. Wei, W. L. Sun, W. Pan, X. Yu, G. Sun and H. Jiang, Comparing the effects of different oxygen-containing functional groups on sulfonamides adsorption by carbon nanotubes: Experiments and theoretical calculation, *Chem. Eng. J.*, 2017, 312, 167-179.
- 18 W. L. Sun, J. Xia and Y.-C. Shan, Comparison kinetics studies of Cu(II) adsorption by multi-walled carbon nanotubes in homo and heterogeneous systems: Effect of nano-SiO2, *Chem. Eng. J.*, 2014, **250**, 119-127.
- 19 W. L. Sun, K. Yin and X. Yu, Effect of natural aquatic colloids on Cu(II) and Pb(II) adsorption by Al₂O₃ nanoparticles, *Chem. Eng. J.*, 2013, **225**, 464-473.
- 20 I. F. Amaral, P. L. Granja and M. A. Barbosa, Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study, *J. Biomat. Sci.-Polym. E*, 2012, 16, 1575-1593.
- 21 L. Wang, S. C. B. Gopinath, P. Anbu, R. D. A. A. Rajapaksha, P. Velusamy, K. Pandian, M. K. M. Arshad, T. Lakshmipriya and C.-G. Lee, Photovoltaic and antimicrobial potentials of electrodeposited copper nanoparticle, *BioChem. Eng. J.*, 2019, **142**, 97-104.
- 22 Y.-J. Kim and K.-S. Ryu, The surface-modified effects of Zn anode with CuO in Zn-air batteries, *Appl. Surf. Sci.*, 2019, **480**, 912-922.
- 23 S. J. Ding, Q. Q. Zhang, D. W. Zhang, J. T. Wang and W. W. Lee, Copper metallization of low-dielectric-constant a-SiCOF films for ULSI interconnects, *J. Phys-Condens. Mat.*, 2001, 13, 6595-6608.
- 24 W. L. Sun, C. Wang, W. Pan, S. Li and B. Chen, Effects of natural minerals on the adsorption of 17β-estradiol and bisphenol A on graphene oxide and reduced graphene oxide, *Environ. Sci.: Nano*, 2017, **4**, 1377-1388.
- 25 W. L. Sun, M. Li, W. Zhang, J. Wei, B. Chen and C. Wang, Sediments inhibit adsorption of 17β-estradiol and 17α-ethinylestradiol to carbon nanotubes and graphene oxide, *Environ. Sci.: Nano*, 2017, 4, 1900-1910.
- 26 M. B. Hay and S. C. B. Myneni, Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy, *Geochim. Cosmochim. Acta*, 2007, **71**, 3518-3532.

- 27 L. Landström, L. Örebrand, K. Svensson and P. O. Andersson, Spectroscopic investigation of substrates contaminated by chemical warfare agents, *J. Anal. Atom. Spectrom.*, 2015, **30**, 2394-2402.
- 28 W. Yan, L. Yan, J. Duan and C. Jing, Sorption of organophosphate esters by carbon nanotubes, *J. Hazard. Mater.*, 2014, **273**, 53-60.
- 29 L. Xiong, Y. Yang, J. Mai, W. Sun, C. Zhang, D. Wei, Q. Chen and J. Ni, Adsorption behavior of methylene blue onto titanate nanotubes, *Chem. Eng. J.*, 2010, **156**, 313-320.
- 30 P. Trivedi, L. Axe and J. Dyer, Adsorption of metal ions onto goethite: singleadsorbate and competitive systems, *Colloids Surf. A*, 2001, **191**, 107-121.
- 31 T. B. Kinraide and U. Yermiyahu, A scale of metal ion binding strengths correlating with ionic charge, Pauling electronegativity, toxicity, and other physiological effects, *J. Inorg. Biochem.*, 2007, **101**, 1201-1213.
- 32 S. Mustafa, M. Irshad, M. Waseem, K. H. Shah, U. Rashid and W. Rehman, Adsorption of heavy metal ions in ternary systems onto Fe(OH)3, *Korean J. Chem. Eng.*, 2013, **30**, 2235-2240.
- 33 Y. Gao, X. Ren, J. Wu, T. Hayat, A. Alsaedi, C. Cheng and C. Chen, Graphene oxide interactions with co-existing heavy metal cations: adsorption, colloidal properties and joint toxicity, *Environ. Sci.: Nano*, 2018, **5**, 362-371.
- 34 http://phases.imet-db.ru/elements/main.aspx