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Text S1. DFT calculation

All DFT calculations were performed using DMOL3 code in Materials Studio 

(v7.0).1 The finite-sized model of graphene oxide (4×5 carbon ring) containing 

carboxyl group and amino group was used to investigate the interactions between the 

SSLBs and metal ions. Cu(II) surrounded by four water molecules ([Cu(H2O)4]2+) was 

employed as the form of Cu(II) in aqueous solution,2 wherease Fe (III), Ni (II) and Cd 

(II) were hydrated in [M(H2O)6]n+ forms.3-5 Geometry optimization was performed 

using generalized gradient approximation (GGA) with Perdew, Burke and Enzerhof 

(PBE) functional.6, 7 The double numeric polarization (DNP) basis set was used to 

describe atomic orbitals.6, 8 Transition state (TS) method was chose for the DFT-D 

correction. The calclulations were porformed in spin unrestricted mode and using 

fomal spin as initial. Effective core potentials treatment6 and medium quality were 

used. The convergence tolerance for optimization were 2×10-5 Ha (energy), 0.004 

Ha/Å (Max. force), and 0.005 Å (Max. displacement). Thermal smearing was used 

and its value was set at 0.005 Ha. The conductor-like screening model (COSMO) 

using water solvent with dielectric constant of 75.84 was used to treat the solvation 

effects. During calculation, monitor bonding was activated in bond calculation dialog 

to enable the automatic recalculation of bonds.

The binding energies (Ebd) were calculated as follows:

                         Ebd = EAB – EA – EB                        

(S1)
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where EAB is the total energy for the attachment of GO or the adsorption of metals to 

SSLBs, and EA and EB are the energies of adsorbent (SSLBs) and adsorbate (GO or 

metals), respectively. The more negative value of Ebd represents a stronger binding of 

GO or metal ions with the SSLBs.2
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Text S2. Calculation of single bilayer adsorption of lipids

The theoretical single bilayer adsorption amount of lipid (Al) was calculated 

using surface area of silica bead as follows:

𝐴𝑙=𝑚𝑙/𝑚𝑠

𝑚𝑙= 2𝑆𝑠 ∗ 𝑀𝑙/(𝑆𝑙 ∗ 𝑁𝐴)

𝑆𝑠= 4𝜋𝑟
2

𝑚𝑠= 𝜌 ∗
4
3
𝜋𝑟3

where Al is the adsorption amount of lipid on silica bead surface (mg/g), ml is the 

mass of bilayer lipid adsorbed on one silica bead (g), ms is the mass of one silica bead 

(kg), Ss is the surface area of one silica bead (m2), Ml is the molar mass of lipid (699 

g/mol for DOTAP; 786 g/mol for DOPC; 801 g/mol for DOPS), Sl is the area of 

headgroup for lipid (6.8 × 10-19 m2), NA is the Avogadro constant (6.022 × 1023 /mol), 

ρ is the density of silica bead (2.65 × 103 kg/m3), and r is the radius of silica bead (2.5 

× 10-9 m).
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Text S3. Adsorption of metals by GO

To further understand the interaction mechanisms of the binary systems, batch 

experiments were conducted to investigate the affinity of different metal ions with GO. 

Zeta potential of negatively GO (−29.9 mV) decreased as metal ions adsorbed on its 

surface. The zeta potential of GO-Fe(III) complex were −19.9 mV, followed by GO-

Cu(II) (−22.2 mV), GO-Ni(II) (−24.7 mV) and GO-Cd(II) (−26.7 mV) (Fig. S9a). 

Moreover, the larger aggregation of GO (327–1650 nm) was formed in the presence 

of metals, compared with the size of GO without metals (Fig. S9b). The promotion 

effect of metals decreased as Fe(III) (1650 nm) > Cu(II) (390 nm) > Ni(II) (330 nm) > 

Cd(II) (327 nm) (Fig. S9b). The adsorption concentration of metal ions by GO 

(quantified by the decrease of metal concentration in solution) showed the order of 

Fe(III) (9.91μM) > Cu(II) (6.46 μM) > Ni(II) (4.10 μM) > Cd(II) (1.93 μM) (Fig. S9c). 

This is consistent with previous studies, which revealed that the adsorption affinity of 

GO to Cu(II) was higher than those to Ni(II) and Cd(II).9-11 In addition, Fe(III) 

showed much stronger interaction with GO. Similarly, Yang et al. (2016)12 also found 

that the aggregation of GO caused by trivalent cation was higher than divalent cations.

GO was abundant in various oxygen-containing groups, which could serve as 

potential adsorption sites for metals. Previous studies suggested carboxyl groups 

mainly contribute to metal adsorption,7 as well as carbonyl group (C=O), hydroxyl 

group (-OH) and epoxy group (C-O-C).6, 13, 14 DFT calculation was conducted to 

reveal the combination between metal ions and oxygen-containing functional groups 
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on the GO surface (Table S8). Results showed that the strongest binding energy was 

found in carboxyl group (−78.97 to −116.21 kcal/mol), confirming with previous 

studies.6, 13-15 As for different heavy metals adsorbed by GO, the binding energy 

followed the same order of Fe(III) > Cu(II) > Ni(II) > Cd(II). 
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Text S4. XPS and FTIR analysis

The C 1s spectra were deconvoluted into four peaks at 284.8 eV, 286.8 eV, 287.9 

eV and 288.8 eV, assigned to C-C, C-O, C=O and O-C=O, respectively.16-19 The O 1s 

spectra were deconvoluted into three peaks at 531.7 eV, 532.5 eV and 533.2 eV 

assigned to O-C=O, C-O, and C-OH/P-O-C, respectively. The P 2p peak was at 133.6 

eV.16 The Cu 2p spectra were deconvoluted into three peaks at 934.5 eV, 954.3 eV 

and 944.1 eV, assigned to Cu 2p1/2, Cu 2p3/2 and Cu 2p satellite, respectively.21-23 The 

results of the XPS analysis are summarized in Table S17. When comparing the 

spectra of the SSLB(0)-GO sample with that of the SSLB(0) sample, a shift of 0.3 eV 

was observed for C-O in the C 1s spectra (Fig. S11a), and a shift of 0.4 eV for all 

three peaks in the O 1s spectra (Fig. S11b), indicating the contribution of ester and 

phosphate groups in the SSLB(0) to hydrogen bonding with the hydroxyl group of 

GO. When comparing the spectra of the SSLB(0)-Cu(II) sample with that of the 

SSLB(0) sample, a shift of 0.2 eV was observed for all three peaks in the O 1s and P 

2p spectra (Fig. S11b and S11c), suggesting the binding of Cu(II) onto ester and 

phosphate group of SSLB(0). When comparing the spectra of the GO-Cu(II) sample 

with that of the GO sample, a shift of 0.2 eV was observed for C-O in the C 1s spectra 

(Fig. S11a), suggesting the binding of Cu(II) onto the carboxyl group of GO. 

Meanwhile, no obvious Cu 2p peaks were observed in the GO, SSLB(0) and GO-

SSLB(0) samples, demonstrating free of Cu. The Cu 2p peaks in the spectra of GO-

Cu(II), SSLB(0)-Cu(II) and SSLB(0)-GO-Cu(II) samples proved the loading of Cu(II). 
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For the SSLB(0)-GO-Cu(II) sample, the C-O peak (287.0 eV) was the same with that 

of the GO-SSLB(0) sample, but shifted by 0.2 eV from that of the SSLB(0)-Cu(II) 

sample (Fig. S11a). Similarly, the C-OH/ P-O-C (533.5 eV) peak of the SSLB(0)-GO-

Cu(II) sample was the same with that of the GO-SSLB(0) sample, but shifted by 0.2 

eV from that of the SSLB(0)-Cu(II) sample (Fig. S11b). The similarity of the spectra 

of the SSLB(0)-GO-Cu(II) with that of the SSLB(0)-GO sample and its difference 

from the spectra of the SSLB(0)-Cu(II) sample for key functional groups associated 

with C-O and C-OH/ P-O-C (ester and phosphate groups) suggested that SSLB(0) 

prefers to binding with GO by hydrogen bonding rather than to Cu(II) via cation 

bridging in the SSLB(0)-GO-Cu(II). This also further confirmed the interaction 

mechanism revealed by the DFT calculation and batch experiments.

For FTIR spectra, the peak around 1050, 1369, 1618 and 1720 cm−1 were 

assigned to C-O, O-C=O, C=C and C=O.16, 17, 24-26 The band centered at 771, 1016 and 

1280 cm−1 were due to P-O-C and P=O from phosphate group in the SSLB(0) 

sample.27, 28 The peak at 1397 cm-1 resulted from the C-N of amino groups in the 

SSLBs.29 As shown in FTIR spectra (Fig. S11e), for the GO-SSLB(0) sample, 

hydrogen bonding was confirmed by the shift of the -OH bond of GO from 3345 cm−1 

to 3359 cm−1 and the O-C=O /C=O bond of SSLB(0) from 1360/1727 cm−1 to 

1353/1720 cm−1. For the SSLB(0)-Cu(II) sample, the band at 1360 cm−1 (O-C=O) 

shifted to 1355 cm−1 was attributed to the binding of Cu(II) onto SSLB(0) through 

ester group. For the GO-Cu(II) sample, the band at 1369 cm−1 (O-C=O) for the GO 
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shifted to 1351 cm−1, suggesting the binding between Cu (II) and carboxyl groups in 

GO. The FTIR spectra did not reveal any distinguishable difference between the 

SSLB(0)-GO-Cu(II), SSLB(0)-GO, and SSLB(0)-Cu(II) samples, and therefore could 

not be used to identify dominant binding mechanism for the ternary system.
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Fig. S1 UV-Vis absorbance of the GO and SSLB(0) suspensions before (solid line) 

and after (dash line) centrifugation at 2000 rpm for 5min.
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Fig. S2 Optimized structures of SSLB(+) (a), SSLB(0) (b), SSLB(-) (c) and GO (d).
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Fig. S3 Speciation distribution of heavy metals calculated using Visual MINTEQ 

version 3.0.

Fe[(OH)2(H2O)4]+ Cu[(H2O)4]2+ Ni[(H2O)6]2+ Cd[(H2O)6]2+

Fig. S4 Optimized structures of hydrated heavy metals.
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1

2

3 Fig. S6 AFM (a) and XRD (b) images of GO (obtained from the manufacturer).

4
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(a) silica bead (b) SSLB

3 Fig. S7 TEM images of silica bead and SSLBs (rough silica surface protruding out of 
4 the lipid bilayer).
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Freundlich model (Q = Kf ×Ce)Adsorbent
Kf ((mg/g)/(mg/L)1/n) 1/n R2

SSLB(+) 0.004 4.691 0.892 
SSLB(0) 0.029 4.165 0.957 
SSLB(-) 0.154 3.587 0.834 
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(d)

(e)

Fig. S10 Molecular dynamic simulation of the interactions between Cu(II), GO and 

SSLB(0) (Potential energies at different dynamic steps calculated using DMOL3 code 

(a); Forcite dynamic energies at different simulation times (b); Snapshots of the initial 

state (c) and final states calculated by DMOL3 (d) and Forcite modules (e).
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Table S1 DFT calculation results for the adsorption of GO by SSLB(+).

Total energy (E, Hartree)Binding group in 

SSLB(+) SSLB(+) GO SSLB(+)

Binding group 

in SSLB(+)
Total energy (E, Hartree) Binding site

E1 -2002.246 -2786.415 -4788.678 -10.65

Hydrogen bonding 
between C=O of −COO− 
in SSLB(+) and −OH on 
the edge of GO

E2 -2002.246 -2786.415 -4788.680 -12.17

Hydrogen bonding 
between C−O of −COO− 
in SSLB(+) and −OH on 
the edge of GO

Ester group

E3 -2002.246 -2786.415 -4788.693 -19.89

Hydrogen bonding 
between C=O of −COO− 
in SSLB(+) and −OH on 
the basal plane of GO
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Binding group in 

SSLB(+)

Total energy (E, Hartree) Binding group 

in SSLB(+)
Total energy (E, Hartree) Binding site

SSLB(+) GO SSLB(+)

E4 -2002.246 -2786.415 -4788.703 -26.21

Hydrogen bonding 
between C−O of −COO− 
in SSLB(+) and −OH on 
the basal plane of GO
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Table S2 DFT calculation results for the adsorption of GO by SSLB(0).

Total energy (E, Hartree)Binding group in 

SSLB(0) SSLB(0) GO GO-SSLB(0)

Binding energy

(kcal/mol)

Structure

(bond length, Å)
Binding site

E1 -2723.099 -2786.415 -5509.607 -58.25

Hydrogen bonding 
between C=O of −COO− 
in SSLB(0) and −OH on 
the edge of GO

E2 -2723.099 -2786.415 -5509.601 -54.26

Hydrogen bonding 
between C−O of −COO− 
in SSLB(0) and −OH on 
the edge of GO

E3 -2723.099 -2786.415 -5509.613 -62.04

Hydrogen bonding 
between C=O of −COO− 
in SSLB(0) and −OH on 
the basal plane of GO

Ester group

E4 -2723.099 -2786.415 -5509.615 -62.90
Hydrogen bonding 
between C−O of −COO− 
in SSLB(0) and −OH on 
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Binding group in 

SSLB(0)

Total energy (E, Hartree) Binding energy

(kcal/mol)

Structure

(bond length, Å)
Binding site

SSLB(0) GO GO-SSLB(0)

the basal plane of GO

P1 -2723.099 -2786.415 -5509.602 -54.90

Hydrogen bonding 
between P-O of –PO4

- 
and −OH on the edge of 
GO

P2 -2723.099 -2786.415 -5509.598 -52.52

Hydrogen bonding 
between P-O of –PO4

- 
and −OH on the basal 
plane of GO

P3 -2723.099 -2786.415 -5509.601 -54.19

Hydrogen bonding 
between P=O of –PO4

- 
and −OH on the edge of 
GO

Phosphate 

group

P4 -2723.099 -2786.415 -5509.606 -57.69

Hydrogen bonding 
between P=O of –PO4

- 
and −OH on the basal 
plane of GO
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Table S3 DFT calculation results for the adsorption of GO by SSLB(−).

Total energy (E, Hartree)Binding group in 

SSLB(−) SSLB(−) GO GO-SSLB(−)

Binding energy

(kcal/mol)

Structure

(bond length, Å)
Binding site

A1 -2793.321 -2786.415 -5579.842 -66.43
Hydrogen bonding between 
−NH3 and C−O in −COO− 
of GO

A2 -2793.321 -2786.415 -5579.830 -58.54
Hydrogen bonding between 
−NH3 and C=O in −COO− 
of GO

A3 -2793.321 -2786.415 -5579.813 -48.31 Hydrogen bonding between 
−NH3 and C=O of GO

Amino 

group

A4 -2793.321 -2786.415 -5579.813 -48.16 Hydrogen bonding between 
−NH3 and C−O−C of GO
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Binding group in 

SSLB(−)

Total energy (E, Hartree) Binding energy

(kcal/mol)

Structure

(bond length, Å)
Binding site

SSLB(−) GO GO-SSLB(−)

A5 -2793.321 -2786.415 -5579.803 -41.95
Hydrogen bonding between 
−NH3 and −OH on the edge 
of GO

A6 -2793.321 -2786.415 -5579.815 -49.70
Hydrogen bonding between 
−NH3 and −OH on the basal 
plane of GO

Ester group E1 -2793.321 -2786.415 -5579.838 -64.15
Hydrogen bonding between 
C=O of −COO− in SSLB(-) 
and −OH on the edge of GO
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Binding group in 

SSLB(−)

Total energy (E, Hartree) Binding energy

(kcal/mol)

Structure

(bond length, Å)
Binding site

SSLB(−) GO GO-SSLB(−)

E2 -2793.321 -2786.415 -2786.415258 -54.71
Hydrogen bonding between 
C−O of −COO− in SSLB(-) 
and −OH on the edge of GO

E3 -2793.321 -2786.415 -5579.841 -65.67

Hydrogen bonding between 
C=O of −COO− in SSLB(-) 
and −OH on the basal plane 
of GO

E4 -2793.321 -2786.415 -5579.840 -65.36

Hydrogen bonding between 
C−O of −COO− in SSLB(-) 
and −OH on the basal plane 
of GO

Carboxyl 

group
C1 -2793.321 -2786.415 -5579.816 -49.94 Hydrogen bonding between 

C−O of –COO- in SSLB(-) 
and−OH on the edge of GO
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Binding group in 

SSLB(−)

Total energy (E, Hartree) Binding energy

(kcal/mol)

Structure

(bond length, Å)
Binding site

SSLB(−) GO GO-SSLB(−)

C2 -2793.321 -2786.415 -5579.821 -53.25 Hydrogen bonding between 
C=O of –COO- in SSLB(-) 
and −OH on the edge of GO

C3 -2793.321 -2786.415 -5579.814 -48.77
Hydrogen bonding between 
C−O of –COO- in SSLB(-) 
and −OH on the basal plane 
of GO

C4 -2793.321 -2786.415 -5579.813 -48.43
Hydrogen bonding between 
C=O of –COO- in SSLB(-) 
and −OH on the basal plane 
of GO

Phosphate 

group
P1 -2793.321 -2786.415 -5579.822 -54.10

Hydrogen bonding between 
P-O of –PO4

- and −OH on 
the edge of GO
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Binding group in 

SSLB(−)

Total energy (E, Hartree) Binding energy

(kcal/mol)

Structure

(bond length, Å)
Binding site

SSLB(−) GO GO-SSLB(−)

P2 -2793.321 -2786.415 -5579.826 -56.07
Hydrogen bonding between 
P-O of –PO4

- and −OH on 
the basal plane of GO

P3 -2793.321 -2786.415 -5579.828 -57.65
Hydrogen bonding between 
P=O of –PO4

- and −OH on 
the edge of GO

P4 -2793.321 -2786.415 -5579.840 -64.98
Hydrogen bonding between 
P=O of –PO4

- and −OH on 
the basal plane of GO
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Table S4 Physicochemical properties of the studied metals30-34

N PE Charge RI (Å) RH (Å) logKH2O Charge/RI

Fe (III) 6 1.83 +3 0.75 4.57 -2.19 4.00

Cu (II) 4 1.90 +2 0.72 4.19 -7.50 2.78

Ni (II) 6 1.91 +2 0.83 4.04 -9.90 2.41

Cd (II) 6 1.69 +2 0.97 4.26 -10.10 2.06

N: number of waters of hydration

PE: Pauling electronegativity

RI: ionic radius

RH: hydrated radius

LogKH2O: log of the fist hydrolysis constant
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Table S5 DFT calculation results for the adsorption of metals by SSLB(+).

Total energy (E, Hartree)
Binding 
group Metal SSLB(+) Metal-SSLB 

(+)

Binding energy
(kcal/mol)

Structure
(bond length, Å)

Fe(III) -581.037 -2002.246 -2583.404 -76.19

Cu(II) -502.678 -2002.246 -2505.028 -65.23

Ni(II) -629.160 -2002.246 -2631.498 -57.81

Ester 

group

Cd(II) -625.890 -2002.246 -2628.222 -54.10
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Table S6 DFT calculation results for the adsorption of metals by SSLB(0).

Total energy (E, Hartree)
Binding site

Metal SSLB(0) Metal-SSLB 
(0)

Binding energy
(kcal/mol)

Structure
(bond length, Å)

Fe(III) -581.037 -2723.099 -3304.231 -59.85

Cu(II) -502.678 -2723.099 -3225.852 -46.77

Ni(II) -629.160 -2723.099 -3352.328 -43.19

Phosphate 

group

Cd(II) -625.890 -2723.099 -3349.051 -39.07

Fe(III) -581.037 -2723.099 -3304.195 -37.16

Cu(II) -502.678 -2723.099 -3225.823 -28.85

Ni(II) -629.160 -2723.099 -3352.299 -25.38

Ester group

Cd(II) -625.890 -2723.099 -3349.027 -23.93
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Table S7 DFT calculation results for the adsorption of metals by SSLB(−).

Total energy (E, Hartree)
Binding 

site Metal SSLB(−) Metal-SSLB 
(−)

Binding energy
(kcal/mol)

Structure
(bond length, Å)

Fe(III) -581.037 -2793.321 -3374.461 -64.88

Cu(II) -502.678 -2793.321 -3296.075 -47.69

Ni(II) -629.160 -2793.321 -3422.540 -37.02

Carboxyl 

group

Cd(II) -625.890 -2793.321 -3419.268 -35.77

Fe(III) -581.037 -2793.321 -3374.462 -65.55

Cu(II) -502.678 -2793.321 -3296.088 -55.56

Ni(II) -629.160 -2793.321 -3422.563 -51.67

Phosphate 

group

Cd(II) -625.890 -2793.321 -3419.284 -45.72

Fe(III) -581.037 -2793.321 -3374.449 -57.44
Ester 

group
Cu(II) -502.678 -2793.321 -3296.046 -29.49
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Binding 
site

Total energy (E, Hartree)
Binding energy

(kcal/mol)
Structure

(bond length, Å)Metal SSLB(−) Metal-SSLB 
(−)

Ni(II) -629.160 -2793.321 -3422.519 -29.06

Cd(II) -625.890 -2793.321 -3419.248 -23.22

Fe(III) -581.037 -2793.321 -3374.442 -52.68

Cu(II) -502.678 -2793.321 -3296.030 -19.41

Ni(II) -629.160 -2793.321 -3422.510 -18.11

Amino 

group

Cd(II) -625.890 -2793.321 -3419.240 -17.84
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Table S8 DFT calculation results for the adsorption of metals by GO.

Total energy (E, Hartree)
Binding 
group Metal GO Metal-GO

Binding energy
(kcal/mol)

Structure
(bond length, Å)

Fe(III) -581.037 -2786.415 -3367.637 -116.21

Cu(II) -502.678 -2786.415 -3289.259 -103.76

Ni(II) -629.160 -2786.415 -3415.724 -93.48

-COO-

Cd(II) -625.890 -2786.415 -3412.431 -78.97

Fe(III) -581.037 -2786.415 -3367.622 -106.39

Cu(II) -502.678 -2786.415 -3289.245 -95.14

Ni(II) -629.160 -2786.415 -3415.701 -79.22

-C=O

Cd(II) -625.890 -2786.415 -3412.422 -73.75

C-O-C Fe(III) -581.037 -2786.415 -3367.618 -104.18



S37

Binding 
group

Total energy (E, Hartree)
Binding energy

(kcal/mol)
Structure

(bond length, Å)Metal GO Metal-GO

Cu(II) -502.678 -2786.415 -3289.242 -93.39

Ni(II) -629.160 -2786.415 -3415.724 -93.62

Cd(II) -625.890 -2786.415 -3412.422 -73.79

Fe(III) -581.037 -2786.415 -3367.601 -93.20

Cu(II) -502.678 -2786.415 -3289.225 -82.52

Ni(II) -629.160 -2786.415 -3415.687 -70.17

C-OH 

(edge)

Cd(II) -625.890 -2786.415 -3412.409 -65.32

Fe(III) -581.037 -2786.415 -3367.614 -101.66

Cu(II) -502.678 -2786.415 -3289.233 -87.76

C-OH 

(basal 

plane)

Ni(II) -629.160 -2786.415 -3415.696 -75.94
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Binding 
group

Total energy (E, Hartree)
Binding energy

(kcal/mol)
Structure

(bond length, Å)Metal GO Metal-GO

Cd(II) -625.890 -2786.415 -3412.422 -73.25



S39

Table S9 DFT calculation results for the adsorption of GO-metal by SSLB(+).

Total energy (E, Hartree)
Binding way

GO-Metal SSLBs SSLB-GO-metal

Binding energy

(kcal/mol)

Structure

(bond length, Å)
Binding site

SSLB(+)‒[GO-Fe] -3367.637 -2002.246 -5370.160 -173.74

Hydrogen bonding between 
C−O of −COO− in SSLB(+) 
and −OH on the basal plane 
of GO

SSLB(+)‒[GO-Cu] -3289.259 -2002.246 -5291.750 -154.45

Hydrogen bonding between 
C−O of −COO− in SSLB(+) 
and −OH on the basal plane 
of GO

SSLB(+)‒[GO-Ni] -3415.724 -2002.246 -5418.211 -151.43

Hydrogen bonding between 
C−O of −COO− in SSLB(+) 
and −OH on the basal plane 
of GO
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Binding way
Total energy (E, Hartree) Binding energy

(kcal/mol)

Structure

(bond length, Å)
Binding site

GO-Metal SSLBs SSLB-GO-metal

SSLB(+)‒[GO-Cd] -3412.431 -2002.246 -5414.917 -151.12

Hydrogen bonding between 
C−O of −COO− in SSLB(+) 
and −OH on the basal plane 
of GO

[GO-Fe]‒SSLB(+) -3367.637 -2002.246 -5370.152 -168.59
Coordination between 
Fe(III) and C−O in −COO− 
of SSLB(+)

[GO-Cu]‒SSLB(+) -3289.259 -2002.246 -5291.740 -147.94
Coordination between 
Cu(II) and C−O in −COO− 
of SSLB(+)
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Binding way
Total energy (E, Hartree) Binding energy

(kcal/mol)

Structure

(bond length, Å)
Binding site

GO-Metal SSLBs SSLB-GO-metal

[GO-Ni]‒SSLB(+) -3415.724 -2002.246 -5418.200 -144.57
Coordination between Ni(II) 
and C−O in −COO− of 
SSLB(+)

[GO-Cd]‒SSLB(+) -3412.431 -2002.246 -5414.900 -140.30
Coordination between 
Cd(II) and C−O in −COO− 
of SSLB(+)
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Table S10 DFT calculation results for the adsorption of GO-metal by SSLB(0).

Total energy (E, Hartree)
Binding mode

GO-Metal SSLBs SSLB-GO-metal

Binding energy

(kcal/mol)

Structure

(bond length, Å)
Binding site

SSLB(0)‒[GO-Fe] -3367.637 -2723.099 -6090.962 -141.56

Hydrogen bonding between 
C−O of −COO− in SSLB(0) 
and −OH on the basal plane 
of GO

SSLB(0)‒[GO-Cu] -3289.259 -2723.099 -6012.570 -133.25

Hydrogen bonding between 
C−O of −COO− in SSLB(0) 
and −OH on the basal plane 
of GO

SSLB(0)‒[GO-Ni] -3415.724 -2723.099 -6139.032 -131.44

Hydrogen bonding between 
C−O of −COO− in SSLB(0) 
and −OH on the basal plane 
of GO

SSLB(0)‒[GO-Cd] -3412.431 -2723.099 -6135.734 -127.89

Hydrogen bonding between 
C−O of −COO− in SSLB(0) 
and −OH on the basal plane 
of GO
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Binding mode
Total energy (E, Hartree) Binding energy

(kcal/mol)

Structure

(bond length, Å)
Binding site

GO-Metal SSLBs SSLB-GO-metal

[GO-Fe]‒SSLB(0) -3367.637 -2723.099 -6090.957 -138.44
Coordination between 
Fe(III) and P-O in –PO4

- of 
SSLB(0)

[GO-Cu]‒SSLB(0) -3289.259 -2723.099 -6012.567 -131.17
Coordination between 
Cu(II) and P-O in –PO4

- of 
SSLB(0)

[GO-Ni]‒SSLB(0) -3415.724 -2723.099 -6139.022 -124.89
Coordination between Ni(II) 
and P-O in –PO4

- of 
SSLB(0)

[GO-Cd]‒SSLB(0) -3412.431 -2723.099 -6135.729 -124.82
Coordination between 
Cd(II) and P-O in –PO4

- of 
SSLB(0)
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Table S11 DFT calculation results for the adsorption of GO-metal by SSLB(−).

Total energy (E, Hartree)
Binding mode

GO-Metal SSLBs SSLB-GO-metal

Binding energy

(kcal/mol)

Structure

(bond length, Å)
Binding site

SSLB(-)‒[GO-Fe] -3367.637 -2793.321 -6161.232 -171.77

Hydrogen bonding between 
C=O of −COO− in SSLB(-) 
and −OH on the basal plane 
of GO

SSLB(-)‒[GO-Cu] -3289.259 -2793.321 -6082.815 -147.97

Hydrogen bonding between 
C=O of −COO− in SSLB(-) 
and −OH on the basal plane 
of GO

SSLB(-)‒[GO-Ni] -3415.724 -2793.321 -6209.273 -143.04

Hydrogen bonding between 
C=O of −COO− in SSLB(-) 
and −OH on the basal plane 
of GO

SSLB(-)‒[GO-Cd] -3412.431 -2793.321 -6205.973 -139.17

Hydrogen bonding between 
of C=O of −COO− in 
SSLB(-) and −OH on the 
basal plane of GO
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Binding mode
Total energy (E, Hartree) Binding energy

(kcal/mol)

Structure

(bond length, Å)
Binding site

GO-Metal SSLBs SSLB-GO-metal

[GO-Fe]‒SSLB(-) -3367.637 -2793.321 -6161.202 -153.14
Coordination between 
Fe(III) and P-O in –PO4

- of 
SSLB(-)

[GO-Cu]‒SSLB(-) -3289.259 -2793.321 -6082.805 -141.70
Coordination between 
Cu(II) and P-O in –PO4

- of 
SSLB(-)

[GO-Ni]‒SSLB(-) -3415.724 -2793.321 -6209.2 6 -131.98
Coordination between 
Ni(III) and P-O in –PO4

- of 
SSLB(-)

[GO-Cd]‒SSLB(-) -3412.431 -2793.321 -6205.960 -130.65
Coordination between 
Cd(II) and P-O in –PO4

- of 
SSLB(-)
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Table S12 Binding energies for the adsorption of metals onto the SSLBs (kcal/mol).

Adsorption groups
SSLBs Metals

Ester Phosphate Carboxyl Amino
Fe(III) -76.19 - - -
Cu(II) -65.23 - - -
Ni(II) -57.81 - - -

SSLB(+)

Cd(II) -54.10 - - -
Fe(III) -37.16 -59.85 - -
Cu(II) -28.85 -46.77 - -
Ni(II) -25.38 -43.19 - -

SSLB(0)

Cd(II) -23.93 -39.07 - -
Fe(III) -57.44 -65.55 -64.88 -52.86
Cu(II) -29.49 -55.56 -47.69 -19.41
Ni(II) -29.06 -51.67 -37.02 -18.11

SSLB(−)

Cd(II) -24.40 -45.72 -35.77 -17.84
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Table S13 Binding energies for the co-attachment of GO and metals by SSLBs 
(kcal/mol)

Metals SSLB(+) SSLB(0) SSLB(-)
Fe(III) -173.74 -141.56 -171.77 
Cu(II) -154.45 -133.25 -147.97
Ni(II) -151.43 -131.44 -143.04

SSLBs‒[GO-metal]

Cd(II) -151.12 -127.89 -139.17
Fe(III) -168.59 -138.44 -153.14 
Cu(II) -147.94 -131.17 -141.7
Ni(II) -144.57 -124.89 -131.98

[GO-metal]‒SSLBs

Cd(II) -140.3 -124.82 -130.65
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Table S14 Gaussian calculation results for interactions between GO, SSLB(0) and Cu(II).

Total energy (E, Hartree)
Systems

SSLB(0) GO Cu
After 

binding

Binding energy
(kcal/mol)

Structure Binding site

GO-SSLB(0) -2722.509 -2785.666 − -5508.223 -30.20
Hydrogen bonding between C−O 
of −COO− in SSLB(0) and −OH 
on the edge of GO

SSLB(0)-Cu(II) -2722.509 − -1944.823 -4667.435 -64.29
Coordination between Cu(II) and 
P-O of –PO4

- in SSLB(0)

GO-Cu(II) − -2785.666 -1944.823 -4730.926 -273.69
Coordination between Cu(II) and 
C−O of −COO− in GO

SSLB(0)‒[GO-Cu(II)] -2722.509 -2785.666 -1944.823 -7453.513 -322.65
Hydrogen bonding between C−O 
of −COO− in SSLB(0) and −OH 
on the basal plane of GO

[GO-Cu(II)]‒SSLB(0) -2722.509 -2785.666 -1944.823 -7453.451 -284.04
Coordination between Cu(II) and 
P-O in –PO4

- of SSLB(0)
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Table S15 Gaussian calculation results for interactions between GO, SSLB(0) and 

Cu(II) with and without considering the van der Waals dispersions.

Total energy (E, Hartree)

System Considering the van 

der Waals dispersions

Without considering the 

van der Waals dispersions

ΔE

(kcal/mol)

GO-SSLB(0) -5508.223 -5507.90 -202.69

SSLB(0)-Cu(II) -4667.435 -4667.27 -103.54

GO-Cu(II) -4730.926 -4730.75 -110.44

SSLB(0)‒[GO-Cu] -7453.513 -7453.07 -277.99

[GO-Cu]‒SSLB(0) -7453.451 -7453.18 -170.06
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Table S16 HOMO and LUMO orbitals and energy levels of GO and GO-metals.

(a) GO (b) GO-Fe(III) (c) GO-Cu(II) (d) GO-Ni(II) (e) GO-Cd(II)

HOMO

(eV)

-4.111 -4.610 -4.674 -4.501 -4.499

LUMO

(ev)

-4.076 -4.366 -4.530 -4.384 -4.380



S51

Table S17 Band shift of GO, SSLB (0), GO-Cu(II), SSLB(0)-GO, SSLB(0)-Cu(II) and SSLB(0)-GO-Cu(II) in XPS spectra.

Position (eV) C 1s O 1s P 2p Cu 2p

C-C C-O C=O O-C=O O-C=O C-O C-OH/ P-O-C - Cu 2p1/2 Cu2+ Cu 2p3/2

GO 284.8 286.7 287.9 288.8 531.7 532.5 533.2 - - - -

SSLB(0) 284.8 286.7 - 288.8 531.7 532.4 533.1 133.6 - - -

GO-Cu(II) 284.8 286.9 287.9 288.8 531.8 532.6 533.3 - 934.5 944.5 954.5

SSLB(0)-GO 284.8 287.0 287.9 288.8 532.1 532.8 533.5 133.7 - - -

SSLB(0)-Cu(II) 284.8 286.8 - 288.9 531.9 532.6 533.3 133.8 933.5 943.5 953.5

SSLB(0)-GO-Cu(II) 284.8 287.0 287.9 288.8 532.0 532.8 533.5 134.0 934.3 941.3 954.3
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