Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2020

Molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles

Jing An^{a, b}, Peiguang Hu^b, Fangjun Li^a, Honghong Wu^{b,¶}, Yu Shen^c, Jason C. White^c, Xiaoli Tian^a, Zhaohu Li^{a*}, Juan Pablo Giraldo^{b*}

^a State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China

^b Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA

 ^c Center for Sustainable Nanotechnology, Connecticut Agricultural Experimental Station, New Haven, Connecticut 06504, USA
^r Current address: College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China

 Corresponding authors: Juan Pablo Giraldo juanpablo.giraldo@ucr.edu

> Zhaohu Li lizhaohu@cau.edu.cn

Figure S1. Representative confocal microscopy images showing no fluorescence of DiI-PNC in cotton seed coat inner tegmen, cotyledon, and radicle after priming with H_2O .

Figure S3. Cerium oxide nanoparticles (PNC) maintain cotton seedling root vitality under salinity stress. A, Representative TTC staining images for determination of root vitality. **B**, Box plots showing quantitative analysis of TTC intensity indicate higher vitality of seedling roots in plants exposed to PNC and grown under salt stress (200 mM NaCl) relative to non-stressed controls. Boxes represent the interquartile range from the first to the third quartile with squares as the medians, error bars shows standard deviation, n = 13. Statistical comparisons were performed by independent samples one-way ANOVA on Kruskal Wallis test. Data with different lowercase letters are considered significantly different (P < 0.05).

Figure S4. Pearson's correlation between RNA-seq samples. W0: after H₂O priming and before salinity stress. P0: after PNC priming and before salinity stress. W12, W24, W48: after H₂O priming and grown under normal conditions for 12, 24 and 48 h, respectively. P12, P24, P48: after PNC priming and grown under normal conditions for 12, 24 and 48 h, respectively. WS12, WS24, WS48: after H₂O priming and grown under salinity stress for 12, 24 and 48 h, respectively. PS12, PS4, PS48: after PNC priming and grown under salinity stress for 12, 24 and 48 h, respectively. PS12, PS24, PS48: after PNC priming and grown under salinity stress for 12, 24 and 48 h, respectively. PS12, PS24, PS48: after PNC priming and grown under salinity stress for 12, 24 and 48 h, respectively. Numbers 1, 2, 3 mean biological replicates.

Figure S5. Differentially expressed genes (DEGs) associated with cotton seedling root development in response to cerium oxide nanoparticles (PNC). Venn diagrams overlap between DEGs for PNC treated and H₂O controls at 0, 12, 24, and 48 h under **A**, normal conditions, and **B**, salinity stress (200 mM NaCl).