Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2020

Environmental Science: Nano

Electronic Supplementary Information

Modeling Performance of Rhamnolipid-Coated Engineered Magnetite Nanoparticles for U(VI) Sorption and Separation

Neha Sharma[†], Anushree Ghosh[†], John D. Fortner⁴, Daniel E. Giammar^{†,*}

[†]Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States

*Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States

*Corresponding Author: Address: Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA Phone: (314) 935-6849 Email: <u>giammar@wustl.edu</u>

Environmental Science: Nano

Environmental Science: Nano

Supplementary Information

Number	Details	Page (s)
Table S1	Phase transfer efficiency achieved by variation of various parameters for obtaining aqueous stable suspensions using Rhamnolipids	3
Table S2	Aqueous complexation reactions considered for modeling adsorption data	4
Figure S1	Variation of log UO_2^{2+} as a function of pH	5
Figure S2	U(VI) speciation under different pH and carbonate conditions	5
Section S1	Estimation of the number of rhamnolipids attached per nanoparticle	6
Figure S3	Fitting SCM parameters to isotherm obtained in (a)Open to atmosphere system and (b) Carbonate free system	7
Figure S4	Effect of Uranium Loading on Zeta potential of Rhamnolipid coated nanoparticles	7

Iron oxide	Rhamnolipid	Time	Amplitude	Numbered	Efficiency
volume (µL)	concentration (mg/L)	(min)	(%)	Mean (nm)	(%)
400	60	5-6	60-70	61.2	26.21
400	70	5-6	60-70	38.16	28.01
400	80	5-6	60-70	41.07	39.94
400	90	5-6	60-70	47.15	36.83
400	100	5-6	60-70	49.51	32.42
500	60	5-6	60	37.86	17.87
500	70	5-6	60	37.96	25.64
500	80	5-6	60	38.27	23.29
500	90	5-6	60	37.85	24.42
500	100	5-6	60	40.35	20.67
800	60	5-6	80-90	104.4	26.7
800	70	5-6	80-90	41.21	34.57
800	80	5-6	80-90	37.5	52.12
800	90	5-6	80-90	36.24	47.46
800	100	5-6	80-90	39.2	43.48
600	60	10-12	80-100	33.76	51.79
600	70	10-12	80-100	29.86	63.71
600	80	10-12	80-100	26.1	84.78
600	90	10-12	80-100	25.66	80.33
600	100	10-12	80-100	26.29	90.57
800	60	10-12	80-100	38.23	28.5
800	70	10-12	80-100	35.1	46.82
800	80	10-12	80-100	32.59	51.43
800	90	10-12	80-100	31.14	63.05
800	100	10-12	80-100	30.42	69.93

Table S1: Phase transfer efficiency achieved by variation of various parameters for obtaining aqueous stable suspensions using Rhamnolipids

Reaction	log K°
$H_2O = H^+ + OH^-$	-14.00
$UO_2^{2+} + H_2O = UO_2OH^+ + H^+$	-5.25
$UO_2^{2+} + 2H_2O = UO_2(OH)_2 + 2H^+$	-12.15
$UO_2^{2+} + 3H_2O = UO_2(OH)_3^- + 3H^+$	-20.25
$UO_2^{2+} + 4H_2O = UO_2(OH)_4^{2-} + 4H^+$	-32.40
$2UO_2^{2+} + H_2O = (UO_2)_2(OH)^{3+} + H^+$	-2.70
$2UO_2^{2+} + 2H_2O = (UO_2)_2(OH)_2^{2+} + 2H^+$	-5.62
$3UO_2^{2+} + 4H_2O = (UO_2)_3(OH)_4^{2+} + 4H^+$	-11.90
$3UO_2^{2+} + 5H_2O = (UO_2)_3(OH)_5^{2+} + 5H^+$	-15.55
$3UO_2^{2+} + 7H_2O = (UO_2)_3(OH)_7^{-} + 7H^+$	-32.20
$4UO_2^{2+} + 7H_2O = (UO_2)_4(OH)_7^+ + 7H^+$	-21.90
$UO_2^{2+} + CO_3^{2-} = UO_2CO_3(aq)$	9.94
$UO_2^{2+} + 2CO_3^{2-} = UO_2(CO_3)_2^{2-}$	16.61
$UO_2^{2+} + 3CO_3^{2-} = UO_2(CO_3)_3^{4-}$	21.84
$3UO_2^{2+} + 6CO_3^{2-} = (UO_2)_3(CO_3)_6^{6-}$	54.00
$2UO_2^{2+} + 3H_2O + CO_3^{2-} = (UO_2)_2CO_3(OH)_3^{-} + 3H^{+}$	-0.86
$3UO_2^{2+} + 3H_2O + CO_3^{2-} = (UO_2)_3CO_3(OH)_3^+ + 3H^+$	0.65

Table S2: Aqueous reactions considered for surface complexation modeling¹

Figure S1: Variation of log UO_2^{2+} as a function of pH. The ionic strength is fixed at 0.01 M.

Figure S2: Speciation of U(VI) in (a) carbonate-free system, (b) open to atmosphere system, and (c) fixed dissolved inorganic carbon (DIC) system. U(VI) loading for all carbonate conditions is 10 µM and ionic strength is 0.01 M.

Environmental Science: Nano

Calculation for estimating number of rhamnolipids attached per nanoparticle

Before ultracentrifuge (Rhamnolipid excess +Rhamnolipid attached to IONPs + Oleic acid attached to IONPs) = 84.48 mg/L as C

After ultracentrifuge, Rhamnolipid excess = 11.16 mg/L as C

Total carbon attached to IONPs = 73.32 mg/L as C

Figure S3: Structures of (a) Monorhamnolipid and (b) Dirhamnolipid

As rhamnolipids have two hydrophobic chains so it is assumed that one molecule of rhamnolipid gets attached to two nanoparticles. This will be considered as one entity in further calculations.

The total number of carbon atoms in one entity = 65.6 carbon atoms (as the standard obtained is a mixture of monorhamnolipid (40%) and dirhamnolipid (60%))

Density of IONPs as magnetite = 5 g/cm^3

The total volume of particles in V liter of suspension = $6.16*10^{-2}$ V cm³

Assuming the diameter of 9 nm,

Number of IONPs in suspension = $1.51 \times 10^{17} \text{ V}$

Concentration of entities in the suspension= $73.32/(65.6*12*1000) = 9.31 * 10^{-5} \text{ M}$

Moles of entities in suspension of Volume V = 9.31×10^{-5} mol/ liter V (liters) = $9.31 \times 10^{-5} \times V$ moles

1 mole contains 6.022×10^{23} entities, hence total number of entities in suspension = 56.06×10^{18} V

Number of entities attached per nanoparticle = 371.2 entities per nanoparticle or 185.6 rhamnolipids per nanoparticle (as 1 rhamnolipid molecule gets attached to two oleic acid molecules)

Site density estimated per surface area of magnetite nanoparticle = 0.73 sites/nm²

Figure S4: Fitting SCM obtained parameters to isotherm obtained for NEM model in (a) Open to atmosphere system and (b) Carbonate-free system. ▲ represent points obtained at pH =8 and ■ represent points obtained at pH=6. Solid lines are the fitting lines obtained using NEM at pH 6 and pH 8.

Figure S5: Effect of uranium loading on zeta potential of rhamnolipid-coated nanoparticles

References

1 R. Guillaumont, T. Fanghanel, V. Neck, J. Fuger, D. A. Palmer, I. Grenthe and M. H. Rand, *Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium*, 2003, vol. 5.