Supporting Information

An Overlooked Effect Induced by Surface Modification: Different Molecular

Response of Chlorella pyrenoidosa to Graphitized and Oxidized Nanodiamonds

Chaofan Zhang^a, Xiaochen Huang^b, Yuhao Chu^a, Nanqi Ren^a, Shih-Hsin Ho^{a,*}

^aState Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China. ^bSchool of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, P. R. China

Number of Pages: 23

Number of Sections: 9

Number of Figures: 5

Number of Tables: 4

* Corresponding author

Shih-Hsin Ho, Ph.D., Professor

Tel.: +86-451-86418180

Email: stephen6949@hit.edu.cn; stephen6949@msn.com

Section Content

Section S1. Preparation and Characterization of GNDs and ONDs

- Section S2. Algae Growth Culture
- Section S3. Crude Enzyme Extraction

Section S4. SOD, CAT and MDA Analysis

- Section S5. ROS Detection and Analysis
- Section S6. Observation and Pretreatment of SEM Analysis
- Section S7. Observation and Pretreatment of TEM Analysis
- Section S8. EPSs Extraction and Analysis
- Section S9. Transcriptomic Analysis

Figures Content

Figure S1. ROS production of *C. pyrenoidosa* when nanoparticles concentration was 50 mg/L at 48 h.

Figure S2. (a) The significantly enriched KEGG pathway (top 20) in response to GNDs exposure of *C. pyrenoidosa*. The vertical axis corresponds to the KEGG pathways, and the horizontal axis displays the enriched value expressed as the ratio of DEG and total gene number of the pathway. The size and color of dots indicates the DEG gene number and the FDR value, respectively. (b) Volcano plot for differentially expressed genes in response to GNDs exposure of *C. pyrenoidosa*. Plots in green and in red separately represented downregulated genes and upregulated genes. The data in Figure S1 were based on the microalgae free of nanoparticles as the control group.

Figure S3. (a) The significantly enriched KEGG pathway (top 20) in response to ONDs exposure of *C. pyrenoidosa*. The vertical axis corresponds to the KEGG pathways, and the horizontal axis displays the enriched value expressed as the ratio of DEG and total gene number of the pathway. The size and color of dots indicates the DEG gene number and the FDR value, respectively. (b) Volcano plot for differentially expressed genes in response to ONDs exposure of *C. pyrenoidosa*. Plots in green and in red separately represented downregulated genes and upregulated genes. The data in Figure S2 were based on the microalgae free of nanoparticles as the control group.

Figure S4. (a) The significantly enriched KEGG pathway (top 20) in response to ONDs exposure of *C. pyrenoidosa*. The vertical axis corresponds to the KEGG pathways, and

the horizontal axis displays the enriched value expressed as the ratio of DEG and total gene number of the pathway. The size and color of dots indicates the DEG gene number and the FDR value, respectively. (b) Volcano plot for differentially expressed genes in response to ONDs exposure of *C. pyrenoidosa*. Plots in green and in red separately represented downregulated genes and upregulated genes. The data in Figure S3 were based on the microalgae exposed to GNDs as the control group.

Figure S5. EEM distribution of EPS extraction of (a) control, (b) GNDs and (c) ONDs treatments.

Tables Content

Table S1. Gene name and gene function of the transcript, encoding enzymes for global changes of cellular metabolic pathways in response to GNDs exposure of *C*. *pyrenoidosa* based on the microalgae free of nanoparticles as the control group.

Table S2. Gene name and gene function of the transcript, encoding enzymes for global changes of cellular metabolic pathways in response to ONDs exposure of *C*. *pyrenoidosa* based on the microalgae free of nanoparticles as the control group.

Table S3. Gene name and gene function of the transcript, encoding proteins for photosynthetic mechanism in response to ONDs exposure of *C. pyrenoidosa* based on the microalgae exposed to GNDs as the control group.

Table S4. Gene name and gene function of the transcript, encoding proteins for protein synthesis mechanism in response to ONDs exposure of *C. pyrenoidosa* based on the microalgae exposed to GNDs as the control group.

Section S1. Preparation and Characterization of GNDs and ONDs:

GNDs were acquired by pyrolysis at 900 °C for 90 min under N₂ atmosphere with a heating rate of 15 °C/min. ONDs were prepared via mixture of H₂SO₄ and HNO₃ (3:1) at 80 °C with continuously stirring for 24 h. Then the acquired ONDs were washed repeatedly with 1 mM NaOH and 1 mM HCl until the suspension reached neutral pH. Finally, the ONDs were dried in the vacuum oven overnight. Fourier transform infrared spectroscopy (SPECTRUM one, PerkinElmer, USA) was used to identify the surface functional groups of GNDs/ONDs with a wavelength region of 500-4000 cm⁻¹ at resolution of 1 cm⁻¹. Confocal raman spectroscopic system (Renishaw, InVia, UK) was applied to record the defects under the 532 nm laser with a wavelength region of 100-4000 cm⁻¹. X-ray powder diffraction (XRD, X'PERT Rro MPD, Panalytical, Holland) was used to examine the crystallinity of GNDs/ONDs over a 2θ collection range of 10-90°.

Section S2. Algae Growth Culture:

C. pyrenoidosa breeds were initially preserved on agar jelly. To activate the *C. pyrenoidosa*, the microalgae were rejuvenated in the classic BG11 under at 250 µmol/m²·s illumination with continuous supply of 2% CO₂ until exponential growth. The BG11 medium was sterilized at 121 °C for 25 min and was composed as follow: 1.5 g/L NaNO₃, 0.04 g/L K₂HPO₄·3H₂O, 0.075 g/L MgSO₄·7H₂O, 0.036 g/L CaCl₂·2H₂O, 0.02 g/L NaCO₃, 0.003 g/L FeCl₃·6H₂O, 0.006 g/L citric acid and 1 mL of microelements composed of 2.86 mg/L H₃BO₃, 1.81 mg/L MnCl₂·4H₂O, 0.22 mg/L ZnSO₄·7H₂O, 0.39 mg/L Na₂MoO₄·2H₂O, 0.08 mg/L CuSO₄·5H₂O and 0.05 mg/L Co(NO₃)₂·6H₂O.

Section S3. Crude Enzyme Extraction:

The microalgae cells were centrifuged at 4 °C and 5000 rpm for 10 min, and were washed by sterile phosphate buffer solution (PBS, pH = 7.4) for three times. Then the collected microalgae pellets were resuspended in PBS and ultrasonicated for 30 min (pulsed with 5 s interval) under ice-bath circumstances. Finally, the crude enzyme suspension was collected by centrifugation at 4 °C, 10000 rpm for 15 min.

Section S4. SOD, CAT and MDA Analysis:

The SOD activity was determined by the inhibition of nitroblue tetrazolium reduction at 560 nm. One unit of SOD activity was the amount of enzyme that decreased the rate of nitroblue tetrazolium reduction by 50%. The CAT activity was assayed by monitoring the degradation of H_2O_2 at 240 nm. One unit of CAT was defined as the amount of enzyme required to degrade 1 µmol of H_2O_2 per minute. The MDA content was measured using a thiobarbituric acid reactive substances (TBARS) assay at 535 nm.

Section S5. ROS Detection and Analysis:

Microalgal cells were centrifuged at 5000 rpm for 5 min and washed with sterile PBS for 3 times. Then, the microalgal cells were incubated with DCFH-DA (10 mM) under the dark condition at 25 °C for 30 min and then washed again with sterile PBS. The measurement and intensity of DCF fluorescence was analyzed using a fluorescence microscope (Eclipse E200, Nikon, Japan) and fluorescence spectrophotometer (F-7000, Hitachi, Japan) with an excitation wavelength of 485 nm and an emission wavelength of 530 nm.

Section S6. Observation and Pretreatment of SEM Analysis:

After washed three times with sterile PBS, the microalgal cells were fixed in 2.5% glutaraldehyde (v/v) overnight. After fixation, all the samples were dehydrated with increasing concentrations of ethanol (30, 50, 70, 80, 90, 100%) and tert-butyl alcohol. Finally, these samples were gold-coated and observed using SEM (TM3030 plus, Hitachi, Japan) at a voltage of 15 kV.

Section S7. Observation and Pretreatment of TEM Analysis:

After washed three times with sterile PBS, the microalgal cells were fixed with 2.5% glutaraldehyde (v/v) for 4 d and then fixed with 1% osmium tetroxide (v/v) for 2 h. Subsequently, 50%, 75%, 90%, and 100% ethanol solutions were gradually added into samples for dehydration. A mixture of 100% ethanol and 100% acetone (v/v; 1:1) and 100% acetone were then successively added for 10 min at 4 °C and 25 °C, respectively. To permeate and embed samples, mixtures with different volume ratios of 100% acetone and epoxy resin (1:1, 1:2, and 1:3, respectively) were used. After staining ultra-thin samples (50-60 nm) with uranyl acetate and citrate, the observation from sample-loaded copper grids was performed using a TEM (H-7650, Hitachi, Japan) at a voltage of 100 kV.

Section S8. EPSs Extraction and Analysis:

Microalgal cells were harvested by centrifugation (8000 rpm for 5 min under 4 °C) and resuspended with sterile PBS to the original volume. Then, the microalgal pellets were heated at 60 °C under the water bath for 30 min. Finally, the EPSs extraction solution was obtained after filtering through a 0.22- μ m membrane filter. The EEM spectra (F-7000, Hitachi, Japan) was subsequently scanned from 220 to 500 nm with an increment of 5 nm by varying the emission wavelength from 220 to 600 nm with an increment of 1 nm.

Section S9. Transcriptomic Analysis:

Transcriptomic analysis was performed at Novogene Bioinformatics Technology Co., Ltd., Beijing, China. Cells were centrifuged at 4 °C and 5000 rpm for 5 min and immediately frozen in liquid nitrogen. RNA degradation and contamination was monitored on 1% agarose gels. RNA purity was checked using the NanoPhotometer® spectrophotometer (IMPLEN, CA, USA). RNA integrity was assessed using the RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, USA). A total amount of 1.5 µg RNA per sample was used as input material for the RNA sample preparations. Sequencing libraries were generated using NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB, USA) following manufacturer's recommendations and index codes were added to attribute sequences to each sample. In order to select cDNA fragments of preferentially 250~300 bp in length, the library fragments were purified with AMPure XP system (Beckman Coulter, Beverly, USA). The clustering of the index-coded samples was performed on a cBot Cluster Generation System using TruSeq PE Cluster Kit v3-cBot-HS (Illumia) according to the manufacturer's instructions. After cluster generation, the library preparations were sequenced on an Illumina Hiseq platform and paired-end reads were generated. Raw data (raw reads) of fastq format were firstly processed through in-house perl scripts. In this step, clean data(clean reads) were obtained by removing reads containing adapter, reads containing ploy-N and low quality reads from raw data. The no-reference-genome method of transcriptome data analysis was used. For quality control of the raw data and subsequent filtering, clean reads were assembled with the Trinity software program and redundant sequences were eliminated, producing non-redundant consensus reference sequences for subsequent pathway analysis.

Figure S1. ROS production of C. pyrenoidosa when nanoparticles concentration was

50 mg/L at 48 h.

Figure S2. (a) The significantly enriched KEGG pathway (top 20) in response to GNDs exposure of *C. pyrenoidosa*. The vertical axis corresponds to the KEGG pathways, and the horizontal axis displays the enriched value expressed as the ratio of DEG and total gene number of the pathway. The size and color of dots indicates the DEG gene number and the FDR value, respectively. (b) Volcano plot for differentially expressed genes in response to GNDs exposure of *C. pyrenoidosa*. Plots in green and in red separately represented downregulated genes and upregulated genes. The data in Figure S1 were based on the microalgae free of nanoparticles as the control group.

Figure S3. (a) The significantly enriched KEGG pathway (top 20) in response to ONDs exposure of *C. pyrenoidosa*. The vertical axis corresponds to the KEGG pathways, and the horizontal axis displays the enriched value expressed as the ratio of DEG and total gene number of the pathway. The size and color of dots indicates the DEG gene number and the FDR value, respectively. (b) Volcano plot for differentially expressed genes in response to ONDs exposure of *C. pyrenoidosa*. Plots in green and in red separately represented downregulated genes and upregulated genes. The data in Figure S2 were based on the microalgae free of nanoparticles as the control group.

Figure S4. (a) The significantly enriched KEGG pathway (top 20) in response to ONDs exposure of *C. pyrenoidosa*. The vertical axis corresponds to the KEGG pathways, and the horizontal axis displays the enriched value expressed as the ratio of DEG and total gene number of the pathway. The size and color of dots indicates the DEG gene number and the FDR value, respectively. (b) Volcano plot for differentially expressed genes in response to ONDs exposure of *C. pyrenoidosa*. Plots in green and in red separately represented downregulated genes and upregulated genes. The data in Figure S3 were based on the microalgae exposed to GNDs as the control group.

Figure S5. EEM distribution of EPS extraction of (a) control, (b) GNDs and (c) ONDs

treatments.

Pathway	EC number	Transcripts	Gene	Gene
5		Ĩ	Name	Function
		Cluster-		glucose-6-
	EC:1.1.1.49	3132.5109	G6PD	phosphate 1-
Pentose Phosphate				dehydrogenase
Pathway	5011144	Cluster- 3132.2868	PGD	6-phospho-
	EC:1.1.1.44			gluconate
				denydrogenase
	EC-5210	Cluster-		glucose-6-
	EC:5.3.1.9	3132.4748	pgi	phosphate
		Cluster		6-phospho-
	EC:2.7.1.11	3132 5113	pfk	fructokinase 1
		Cluster-		in detokindse i
		3132.6079		fructose-
	EC:4.1.2.13	Cluster-	ALDO	bisphosphate
Glycolysis		3132.2453		aldolase
	EC:1.2.1.9	Cluster- 3132.6635	gapN	glyceraldehyde
				3-phosphate
				dehydrogenase
	EC 2723	Cluster-	ngk	phosphoglycera
	10.2.7.2.5	3132.6066	P8 ⁿ	kinase
	EC:5.4.2.12	Cluster-	gpmI	phosphoglycera
		3132.3559	01	mutase
	EC:4.2.1.11	Cluster-	eno	enolase
		5152.4040 Cluster		
	EC:2.7.1.40	Ciuster-	pyk	pyruvate kinas
Tricarboxylic Acid Cycle		Cluster-		
	EC:2.3.3.1	3132.4753	CS	citrate synthas
		Cluster-		aconitate
	EC:4.2.1.3	3132.4636	ACO	hydratase
	EC:1.1.1.42	Cluster-		isocitrate
		3132.356	ıcd	dehydrogenase
	EC.1 2 4 2	Cluster-	ACDU	2-oxoglutarate
	EU.1.2.4.2	3132.3410	UGDH	dehydrogenase
	EC:1.3.5.1	Cluster-	SDHA	succinate

Table S1. Gene name and gene function of the transcript, encoding enzymes for global changes of cellular metabolic pathways in response to GNDs exposure of *C*. *pyrenoidosa* based on the microalgae free of nanoparticles as the control group.

	3132.7608			dehydrogenase
		Cluster-		
	$EC \cdot 1 2 4 1$	3132.6272	aaaF	pyruvate
	EC.1.2.4.1	Cluster-	ucee	dehydrogenase
		3132.5842		
	$EC \cdot 1 \times 1 A$	Cluster-	תזת	dihydrolipoamide
	EC.1.0.1.4	3132.5344	DLD	dehydrogenase
	EC:7121	Cluster-		H+-transporting
Oxidative	EC./.1.2.1	3132.5238	ГМА	ATPase
Phosphorylation	$EC \cdot 2 \in [1, 1]$	Cluster-	pp a	inorganic
	EC.3.0.1.1	3132.6284	рри	pyrophosphatase
Oxidative Stress	DEV5	Cluster-	DEV5	peroxin-5
	PEAS	3132.3608	PEAJ	
	DMD70	Cluster-		ATP-binding
	PMP/0	3132.2175	PMP/0	cassette
	EC:11116	Cluster-	CAT	catalase
	EC.1.11.1.0	3132.6109	CAI	
	EC:11511	Cluster-	5001	superoxide
	EC.1.13.1.1	3132.6101	SODI	dismutase
	EC:1 11 1 0	Cluster-	nor	glutathione
	EC:1.11.1.9	3132.3807	pgx	peroxidase

Table S2. Gene name and gene function of the transcript, encoding enzymes for globalchanges of cellular metabolic pathways in response to ONDs exposure of *C*.*pyrenoidosa* based on the microalgae free of nanoparticles as the control group.

Dethyway	EC number	Transcript	Gene	Gene
Pathway	EC number	S	Name	Function
	EC:1.1.1.49	Cluster-		glucose-6-
			G6PD	phosphate 1-
Pentose Phosphate		5152.5109		dehydrogenase
Pathway		Cluster		6-phospho-
	EC:1.1.1.44	3132 2868	PGD	gluconate
		5152.2000		dehydrogenase
	$EC \cdot 2722$	Cluster-	nak	phosphoglycerate
Glycolycic	EC.2.7.2.3	3132.6066	pgĸ	kinase
Glycolysis	EC:27140	Cluster-	muk	nuruvata kinaca
	EC.2.7.1.40	3132.5274	рук	pyruvate killase
	$EC \cdot 2 = 2 = 1$	Cluster-	CS	citrate synthese
	EC.2.3.3.1	3132.4753	CS	childle synthase
	$FC \cdot 4213$	Cluster-	100	aconitate
	LC.4.2.1.3	3132.4636	ACO	hydratase
	EC:1.1.1.42	Cluster-	icd	isocitrate
Tricarboxylic Acid		3132.356	icu	dehydrogenase
Cycle	EC:1.1.1.37	Cluster-	MDH1	malate
		3132.1836	1112111	dehydrogenase
	EC:2.3.1.12	Cluster-	DLAT	pyruvate
		3132.1498		dehydrogenase
	EC:1.2.4.2	Cluster-	OGDH	2-oxoglutarate
		3132.3410		dehydrogenase
	EC [.] 7112	Cluster-	nuoA	NADH-quinone
	20171112	3132.2649	111011	oxidoreductase
		Cluster-		ubiquinol-
	EC:7.1.1.8	3132.3545	net A	cvtochrome c
Oxidative Phosphorylation		Cluster-	P	reductase
		3132.5014		
		Cluster-		
		3132.5838		F-type H+-
	EC:3.6.3.14	Cluster-	atpB	transporting
		3132.4716	ſ	ATPase
		Cluster-		
		3132.2544		

	EC: 7.1.2.1	Cluster- 3132.5238	PMA	H+-transporting ATPase
Oxidative Stress	PEX5	Cluster- 3132.3608	PEX5	peroxin-5
	EC:1.15.1.1	Cluster- 3132.6101	SOD1	superoxide dismutase
	EC:1.11.1.9	Cluster- 3132.5343	gpx	glutathione peroxidase

Pathway Transcripts		log2	Gene	Gene	
	1		Name	Function	
	Cluster-3132.4709	0.26747	Lhcal		
	Cluster-3132.5562	0.56418	Lhca3	light-harvesting	
	Cluster-3132.5691	0.32026	Lhca4	complex I	
	Cluster-3132.5813	0.20443	Liicu i	complex I	
	Cluster-3132.5820	0.57116	Lhca5		
Light Harvesting	Cluster-3132.7868	0.31416	Lhcb1		
Complex	Cluster-3132.6202	0.32916			
	Cluster-3132.6603	0.62195	Theh?	light homeosting	
	Cluster-3132.6617	0.61617	LNCD2		
	Cluster-3132.6290	0.48496		complex II	
	Cluster-3132.6200	0.48496	Lhcb4		
	Cluster-3132.5980	0.54156	Lhcb5		
	Cluster-3132.5617	0.16056	PsbO	photosystem II	
	Cluster-3132.5747	0.25216	PsbP	oxygen-evolving enhancer protein	
Photosystem II	Cluster-3132.5099	0.49741	PsbR	photosystem II	
				10kDa protein	
	Cluster-3132.4729	0.23359	Psb27	photosystem II	
				Psb27 protein	
	Cluster-3132 5502	0.27935	PshK	photosystem I	
	Cluster 5152.5502		1 5011	subunit X	
	Cluster-3132 6089	0 19708	$P_{sa}D$	photosystem I	
	Cluster 5152.0007	0.17700	1 SuD	subunit II	
Photosystem I	Cluster_3132 6067	0 31036	$P_{sa}F$	photosystem I	
1 notosystem 1	Cluster-5152.0007	0.51750	1 Sul	subunit III	
	Cluster 2122 4540	0 20265	$D_{\alpha \alpha}C$	photosystem I	
	Cluster-3132.4540	0.20365	PsaG	subunit V	
	01 / 0100 0005	0.40317	D = I	photosystem I	
	Cluster-3132.238/		PsaL	subunit XI	
Photosysthetic Electron Transport		0.23359	PetH	ferredoxin-	
	Cluster-3132.4729			NADP+ reductase	
	Cluster-3132.5502	0.31859	PetF	ferredoxin	

Table S3. Gene name and gene function of the transcript, encoding proteins for photosynthetic mechanism in response to ONDs exposure of *C. pyrenoidosa* based on the microalgae exposed to GNDs as the control group.

Table S4. Gene name and gene function of the transcript, encoding proteins for protein synthesis mechanism in response to ONDs exposure of *C. pyrenoidosa* based on the microalgae exposed to GNDs as the control group.

Dothway	FC number	Transcript	Gene	Gene
Fallway	EC number	S	Name	Function
	EC:5.3.1.9	Cluster-	ngi	glucose-6-phosphate
		3132.4748	pgi	isomerase
	$EC \cdot 2.7 + 1.11$	Cluster-	nfk	6-phospho-fructokinase
	LC.2.7.1.11	3132.4546	рук	
	EC:2723	Cluster-	nok	phosphor-glycerate kinase
	10.2.1.2.0	3132.6066	P8 ⁿ	
	EC:1.2.1.12	Cluster-	ganA	glyceraldehyde 3-
		3132.8027	8.1.	phosphate dehydrogenase
		Cluster-		2,3-bisphosphoglycerate-
<u>a</u>	EC:5.4.2.12	3132.3559	gpmI	independent
Glycolysis				phosphoglycerate mutase
	EC:4.2.1.11	Cluster-	eno	enolase
		3132.4040		
	EC:2.7.1.40	Cluster-	pyk	pyruvate kinase
	EC:1.2.4.1	5152.5155 Cluster		
		3132 4765	aceE	nuruvate debudrogenase
	EC:2.3.1.12	Cluster-		pyruvate dehydrogenase
		3132 1498	aceF	pyruvate denydrogenase
	EC:2.3.3.8	Cluster-		
		3132.6398	ACLY	ATP citrate (pro-S)-lyase
		Cluster-		
	Nrt	3132.6233	NRT	nitrate/nitrite transporter
Nitrogen		Cluster-		
Metabolism	NR	3132.5007	NR	nitrate reductase
	FG (2 1 2	Cluster-	7 4	1
	EC:6.3.1.2	3132.2891	glnA	glutamine synthetase
Amino Acid Synthesis		Cluster-		
	EC:2.6.1.45	3132.7036	AGXT	serine-glyoxylate
		Cluster-		transaminase
		3132.6481		
	EC-4 2 1 20	Cluster-	trpA	truntonhan aunthasa
	EC:4.2.1.20	3132.4183		tryptopnan synthase
	EC:4.1.3.27	Cluster-	ΤΡΡ2	anthranilate conthase
		3132.5219	IKP3	anumannate synthase

	FC.2724	Cluster		0
	LC.2.7.2.7	3132.5010	lysC	aspartate kinase
	EC:2.6.1.2	Cluster- 3132.6088	ALT	alanine transaminase
	EC:4.3.2.1	Cluster- 3132.1832	ASL	arginine-succinate lyase
	EC:2.1.3.3	Cluster- 3132.3623	OTC	ornithine carbamoyl- transferase
	EC:6.1.1.17	Cluster- 3132.5606	gltX	glutamyl-tRNA synthetase
	EC:6.1.1.18	Cluster- 3132.2905	glnS	glutaminyl-tRNA synthetase
	EC:6.1.1.7	Cluster- 3132.3757	alaS	alanyl-tRNA synthetas
Aminoacyl- tRNA Biosynthesis	EC:6.1.1.14	Cluster- 3132.2406 Cluster- 3132.3221	glyQ	glycyl-tRNA synthetase
	EC:6.1.1.11	Cluster- 3132.6426	serS	seryl-tRNA synthetase
	EC:6.1.1.9	Cluster- 3132.4574	valS	valyl-tRNA synthetase
	EC:6.1.1.4	Cluster- 3132.4687	leuS	leucyl-tRNA synthetase
	EC:6.1.1.6	Cluster- 3132.2999	lysK	lysyl-tRNA synthetase
	EC:6.1.1.19	Cluster- 3132.4691	argS	arginyl-tRNA synthetase
	EC:6.1.1.20	Cluster- 3132.3522	pheS	phenylalanyl-tRNA synthetase
Ribosome Biogenesis	-	Cluster- 3132.2689	UTP13	U3 small nucleolar RNA-
	-	Cluster- 3132.3353	UTP21	associated protein
	-	Cluster- 3132.4746	Real	midasin
	-	Cluster- 3132.5207	CRM1	exportin-1
	EC:3.6.1	Cluster-	LSG1	large subunit GTPase

		3132.6367		
Translocatio	-	Cluster- 3132.4985	SEC61a	protein transport protein
	-	Cluster- 3132.327	SEC63	translocation protein
	-	Cluster- 3132.1652	SRP72	
n	-	Cluster- 3132.1598	SRP68	signal recognition
	-	Cluster- 3132.6475	SRP54	
	-	Cluster- 3132.4703	TatA	sec-independent protein translocase protein
	EC:3.2.1.207	Cluster- 3132.961	GlcII	mannosyl-oligosaccharide glucosidase
	-	Cluster- 3132.1413	CNX	calnexin
	-	Cluster- 3132.7363		
	-	Cluster- 3132.2943	OSTs	Oligosaccharyl-transferase
	-	Cluster- 3132.4000	0515	complex
Drotoin	-	Cluster- 3132.1627	NEF	hypoxia
Processing	-	Cluster- 3132.7142	GRP94	heat shock protein
	-	Cluster- 3132.6683	Sec13/31	
	-	Cluster- 3132.6517	50015751	protein transport protein
	-	Cluster- 3132.6387	Sec22/24	r
	-	Cluster- 3132.5744		
	EC:3.4.21.11 2	Cluster- 3132.4180	S1P	membrane-bound transcription factor protease