**Supporting Information** 

## Realistic Polyethylene Terephthalate Nanoplastics and the Size- and Surface Coating-Dependent Toxicological Impacts on Zebrafish Embryos

Yunxia Ji,<sup>a,#</sup> Chuyu Wang,<sup>a,#</sup> Yunqing Wang,<sup>\*,a,c</sup> Longwen Fu,<sup>a</sup> Mingsan Man,<sup>a</sup> Lingxin Chen<sup>\*,a,b,c</sup>

- <sup>a</sup> CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- <sup>b</sup> Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China

<sup>c</sup> Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China

E-mail address: yqwang@yic.ac.cn (Y.Q. Wang); lxchen@yic.ac.cn (L.X. Chen); Fax: +86 535 2109130; Tel: +86 535 2109130

# These two authors contributed equally to this work.

## **TABLE OF CONTENTS**

## Figures and tables

**Table S1** Size (TEM, DLS), polydispersity index (PDI), Zeta potential of PET nanoplastics with different capping agents obtained by centrifugation with different speeds.

 Table S2 Nanoplastics samples for toxicological assessment study.

Table S3 The yield of nanoplastics samples with different sizes and different capping agents.

Figure S1 Zeta potential of  $PET_{20-BSA}$  and  $PET_{20-SDS}$  before and after dilution.

**Figure S2** Fluorescent distribution BAS alone, PET<sub>20-BSA</sub>, PET<sub>80-BSA</sub> & PET<sub>800-BSA</sub>, SDS alone and PET<sub>20-SDS</sub>, PET<sub>60-SDS</sub> & PET<sub>800-SDS</sub> at 24 and 48 hpf.

**Figure S3** Fluorescent distribution BAS alone, PET<sub>20-BSA</sub>, PET<sub>80-BSA</sub> & PET<sub>800-BSA</sub>, SDS alone and PET<sub>20-SDS</sub>, PET<sub>60-SDS</sub> & PET<sub>800-SDS</sub> at 72, 96 and 120 hpf.

**Figure S4** Fluorescent distribution BAS alone,  $PET_{20-BSA}$ ,  $PET_{80-BSA}$  &  $PET_{800-BSA}$ , SDS alone and  $PET_{20-SDS}$ ,  $PET_{60-SDS}$  &  $PET_{800-SDS}$  at 144 and 168 hpf.

## Figures and tables

| Туре    | Centrifugat<br>ion Speeds<br>(rpm) | Mean SEM<br>size (nm) | DLS size (nm) | PDI               | Zeta potential<br>(mV) |
|---------|------------------------------------|-----------------------|---------------|-------------------|------------------------|
| PET@BSA | 1500                               | 804.24                |               |                   | -20.00±3.00            |
|         | 4000                               | 71.96                 | 273.67±16.28  | $0.436 \pm 0.040$ | -24.6±2.10             |
|         | 10000                              | 32.46                 | 180.93±9.08   | $0.274 \pm 0.040$ | -25.47±2.46            |
| PET@SDS | 1000                               | 887.41                |               |                   | -84.2±2.32             |
|         | 4000                               | 55.04                 | 315.30±13.00  | $0.442 \pm 0.042$ | -73.73±3.31            |
|         | 10000                              | 24.09                 | 206.33±11.30  | $0.307 \pm 0.078$ | -66.7±6.78             |

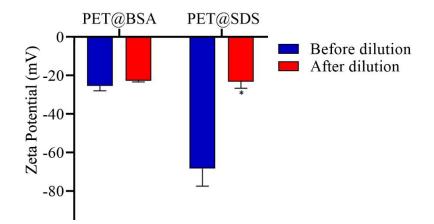
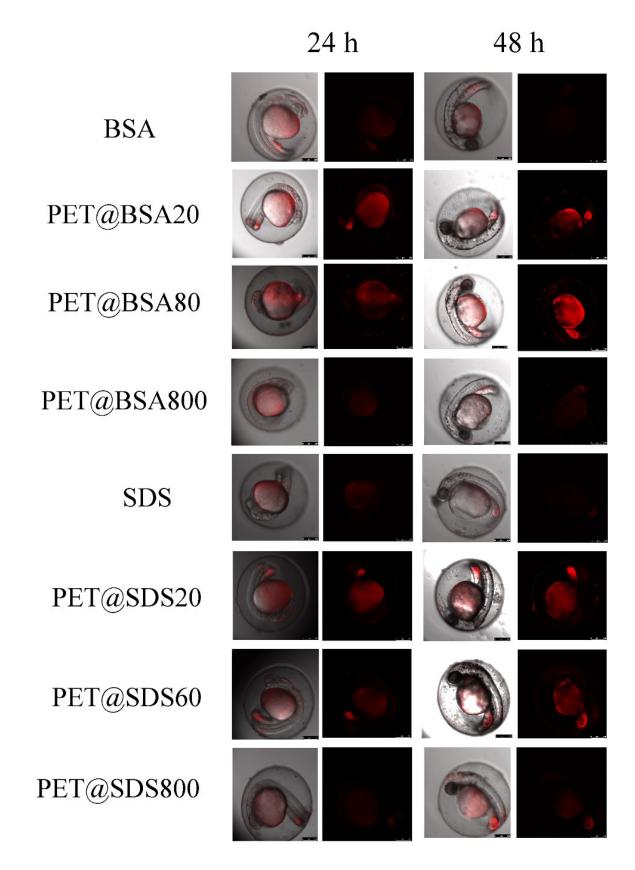
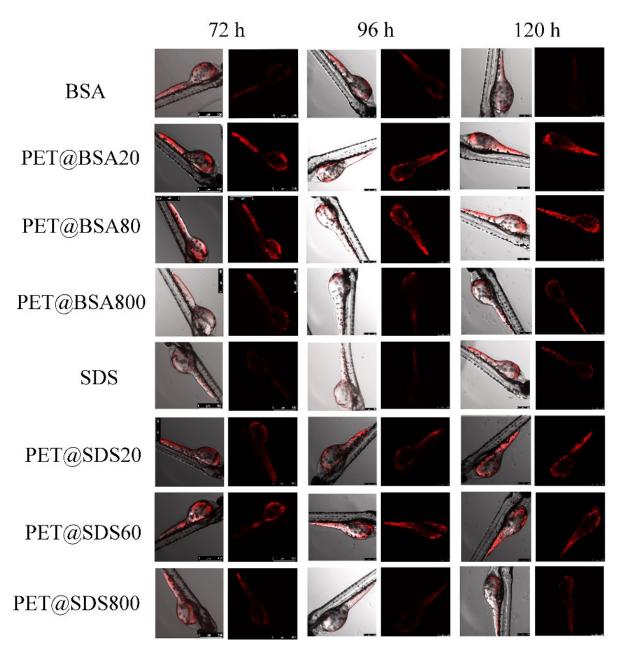

**Table S1** Size (TEM, DLS), polydispersity index (PDI) of PET nanoplastics with different capping agents obtained by centrifugation with different speeds.

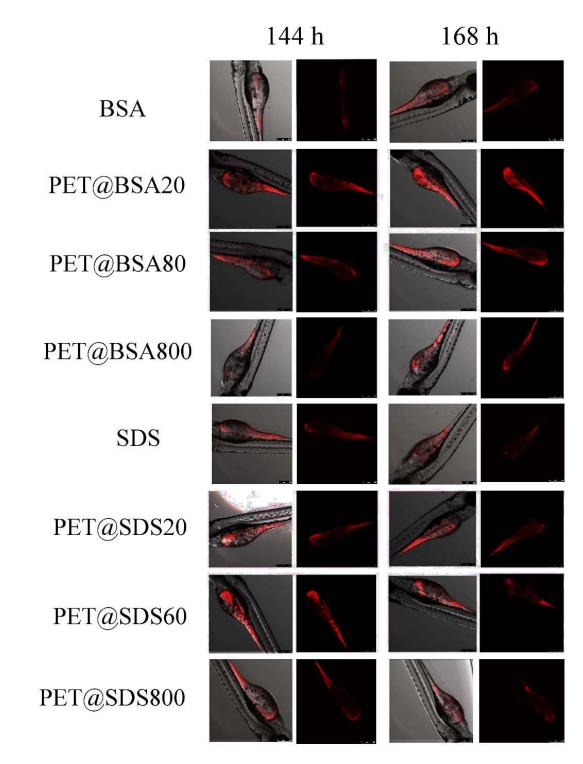
 Table S2 Nanoplastics samples for toxicological assessment study.


| Sample             | Tyme    | Mean SEM size | Centrifugation |
|--------------------|---------|---------------|----------------|
| name               | Туре    | (nm)          | speeds (rpm)   |
| PET <sub>20</sub>  | PET@BSA | 32.46         | 10000          |
|                    | PET@SDS | 24.09         | 10000          |
| PET <sub>60</sub>  | PET@SDS | 55.04         | 4000           |
| PET <sub>80</sub>  | PET@BSA | 71.96         | 4000           |
| PET <sub>800</sub> | PET@BSA | 804.24        | 1500           |
|                    | PET@SDS | 887.41        | 1000           |

**Table S3** The yield of nanoplastics samples with different sizes and different capping agents. 20 g of plastic sheets was removed into a beaker that contained 300 mL of 0.05% BSA solution or 0.01% SDS solution. A hand blender was used to break down the plastics with a working pattern of 1 min of blending alternating with 5 min of resting for a total of 6 h. After blending, the supernatant was subjected to differential centrifugation (500, 1000, 1500, 2000, 4000, 6000, 8000 and 10000 rpm for 20 min) to obtain nanoparticles in different diameter ranges. The precipitations centrifuging with 1000 (or 1500), 4000, and 10000 rpm with SEM size of 20, 60 (or 80) and 800 nm respective were used in the following studies. Each PET nanoparticles solution was cut into two equal pieces; one half was dried for 24 hours in a vacuum drying oven at 40 °C, followed by weighed by millionth analytical balance.


| Sample<br>name     | Туре    | Yield (mg) |
|--------------------|---------|------------|
| PET <sub>20</sub>  | PET@BSA | 1.92       |
|                    | PET@SDS | 2.18       |
| PET <sub>60</sub>  | PET@SDS | 4.84       |
| PET <sub>80</sub>  | PET@BSA | 5.28       |
| PET <sub>800</sub> | PET@BSA | 15.72      |
|                    | PET@SDS | 18.27      |




**Figure S1** Zeta potential of  $PET_{20-BSA}$  and  $PET_{20-SDS}$  before and after dilution. \*P < 0.05, versus same capped PET NPs before dilution.



**Figure S2** Fluorescent distribution of BAS alone,  $PET_{20-BSA}$ ,  $PET_{80-BSA}$  &  $PET_{800-BSA}$ , SDS alone and  $PET_{20-SDS}$ ,  $PET_{60-SDS}$  &  $PET_{800-SDS}$  at 24 and 48 hpf.



**Figure S3** Fluorescent distribution of BAS alone,  $PET_{20-BSA}$ ,  $PET_{80-BSA}$  &  $PET_{800-BSA}$ , SDS alone and  $PET_{20-SDS}$ ,  $PET_{60-SDS}$  &  $PET_{800-SDS}$  at 72, 96 and 120 hpf.



**Figure S4** Fluorescent distribution of BAS alone,  $PET_{20-BSA}$ ,  $PET_{80-BSA}$  &  $PET_{800-BSA}$ , SDS alone and  $PET_{20-SDS}$ ,  $PET_{60-SDS}$  &  $PET_{800-SDS}$  at 144 and 168 hpf.