Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2020

Supplementary Data

Nanobiochar: Production, Properties, and Multifunctional Applications

Sammani Ramanayaka¹, Meththika Vithanage^{1,*}, Daniel S. Alessi², Wu-Jun Liu³, Anil C.A. Jayasundera⁴, Yong Sik Ok^{5,*}

¹Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka

²Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada

³CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China

⁴Department of Chemistry, University of Peradeniya, Peradeniya, Sri Lanka

⁵Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea

Table S1. Basic operation parameters and estimated methods capital costs (The appropriate values should be used depending on the country and production method of biochar and nanobiochar) ¹

Description	Method I	Method II	Method III
-	(Milling and nano	(Microwave pyrolysis)	(Thermal-flash
	fraction extraction)		exfoliation)
Operating parameters			
Operating time per day	Daily operating time	Daily operating time	Daily operating time
Annual operating time	Operating time/day x no. of working days/year	Operating time/day x no. of working days/year	Operating time/day x no. of working days/year
Process time (including preparation time, reaction time, cooling down process, collecting product)	Total time to take ground biochar and separate the nano fraction	Total time to take microwave pyrolyzed nanobiochar	Total time to take microwave pyrolyzed nanobiochar
Amount of feedstock	Feedstock (Kg) needed to obtain the specific weight of nanobiochar	Feedstock (Kg) needed to obtain the specific weight of nanobiochar	Feedstock (Kg) needed to obtain the specific weight of nanobiochar
Measurement of capital cost			
Fixed Capital Investment (FCI) ²	$a(Y_1 USD x 1.1) + (X_1 USD x 1.3)$	^b (Y ₂ USD x 1.1) + (X ₂ USD x 1.3)	^c (Y ₃ USD x 1.1) + (X ₃ USD x 1.3)
Total plant cost (TPC) ²	^d Sum of FCI + 15% FCI	^e Sum of FCI + 15% FCI	fSum of FCI + 15% FCI
Measurement of operating cost	1	1	1
Feedstock	Amount of feedstock/day x working days	Amount of feedstock/day x working days	Amount of feedstock/day x working days

Electricity	(Z ₁ USD/kWh x	(Z ₂ USD/kWh x	(Z ₃ USD/kWh x
	operating time x working	operating time x working	operating time x working
	days)	days)	days)
Maintenance	3% of FCI	3% of FCI	
Labour cost	(m ₁ USD/h x operating	(m ₂ USD/h x operating	(m ₃ USD/h x operating
	time x working days)	time x working days)	time x working days)
Production cost ³			
	Annual operating	Annual operating	Annual operating
	cost/Annual production	cost/Annual production	cost/Annual production
	cost	cost	cost

- a. FCI for scaled-up system (Method I): The sum of the total equipment cost multiply with a direct factor of 1.1 (USD \times 1.1), added to the total cost of design, installation, fabrication and modification on the system and multiply by an indirect factor of 1.3 (USD \times 1.3)
- b. FCI for scaled-up system (Method II): The sum of the total equipment cost multiply with a direct factor of 1.1 (USD \times 1.1), added to the total cost of design, installation, fabrication and modification on the system and multiply by an indirect factor of 1.3 (USD \times 1.3)
- c. FCI for scaled-up system (Method III): The sum of the total equipment cost multiply with a direct factor of 1.1 (USD × 1.1), added to the total cost of design, installation, fabrication and modification on the system and multiply by an indirect factor of 1.3 (USD × 1.3)
- d. FCI + 15% of FCI of scaled-up system of nanobiochar (method I)
- e. FCI + 15% of FCI of scaled-up system of nanobiochar (method II)
- f. FCI + 15% of FCI of scaled-up system of nanobiochar (method III)

X₁, X₂, X₃. Equipment cost*

Y₁, Y₂, Y₃. The sum of the total equipment cost*

z₁, z₂, z₃. Total cost for kilo watt per hour*

m₁, m₂, m₃. Labor cost per hour*

* Values depends on the country and the method

References

- 1. Lam, S. S. *et al.* Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis. *Renew. Sustain. Energy Rev.* **115**, 109359 (2019).
- 2. Islam, M. N. & Ani, F. N. Techno-economics of rice husk pyrolysis, conversion with catalytic treatment to produce liquid fuel. *Bioresour. Technol.* **73**, 67–75 (2000).
- 3. Liew, R. K. *et al.* Innovative production of highly porous carbon for industrial effluent remediation via microwave vacuum pyrolysis plus sodium-potassium hydroxide mixture activation. *J. Clean. Prod.* **208**, 1436–1445 (2019).