Supporting Information (SI)

(Nano)microplastics promote the propagation of antibiotic resistance

genes in landfill leachate

Jianhong Shi, abc Dong Wu, abc Yinglong Su, abcd Bing Xie, *abcd

^a Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste,

School of Ecological and Environmental Sciences, East China Normal University,

Shanghai 200241, China

^b Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of

Ecology and Environmental Science, East China Normal University, Shanghai 200241,

China

^c Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

^d Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China

* Corresponding author.

E-mail address: bxie@des.ecnu.edu.cn (B. Xie).

Tel.: +86 021 54341276

Table S1	Characteristics	of original	leachate use	ed in	(nano)microplastics	exposure
experimen	.t.					

Parameters	Original leachate
рН	7.9 ± 0.1
Conductivity (ms/cm)	19.2 ± 0.4
DOC (mg/L)	5395 ± 172
DON (mg/L)	2538 ± 145
NH4+-N (mg/L)	1304 ± 86
NO ₃ ⁻ -N (mg/L)	21.5 ± 2.8

DOC: Dissolved organic carbon; DON: Dissolved organic nitrogen; NH4⁺-N: Ammonia nitrogen; NO₃-N: nitrate

nitrogen.

Polystyrene beads	Particle Size
50-100 nm	72±6 nm
200-500 nm	315±28 nm
9.0-9.9 μm	9.3±0.2 μm

Table S2. Hydraulic diameters of the different polystyrene beads.

The landfill leachate as a special substrate contains high organic carbon and other nutrients. In this study, the content of dissolved organic carbon (DOC) and nitrogen (DON) in the original leachate was 5395 mg/L and 1938 mg/L, respectively. After 60 days, the content of DOC in the control and N/MP-exposed groups were 2487 mg/L and 2897-3260 mg/L, and the content of DON were 1032 mg/L and 1169-1374 mg/L, respectively. Besides, according to our previous experiments (Shi et al., 2019), the content of dissolved organic carbon in leachate with longer landfill age was \sim 1500mg/L and decreased gradually over a period of nearly two months, indicating that it was available to microbes. Thus, microbes were not suffered from the limitation of carbon and nitrogen sources in this study during the 60 days incubation periods.

Donomotors	Leachate after 60 days			
Parameters	Control	50-100 nm	200-500 nm	9.0-9.9 µm
DOC (mg/L)	2487 ± 56	2943 ± 137	3260 ± 37	2897 ± 195
DON (mg/L)	1032 ± 98	1169 ± 174	1374 ± 135	1205 ± 204

Targeted genes	Amplicon length	Primer sequences $(5' - 3')$	Annealing	
	(bp)		temperatures (°C)	
sul1	172	FW CACCGGAAACATCGCTGCA	55	
		RV AAGTTCCGCCGCAAGGCT		
~~ <i>l</i> 2	165	FW CTCCGATGGAGGCCGGTAT	55	
5412		RV GGGAATGCCATCTGCCTTGA		
aadA1	195	FW AGCTAAGCGCGAACTGCAAT	55	
		RV TGGCTCGAAGATACCTGCAA	55	
strB	185	FW GCTCGGTCGTGAGAACAATCT	55	
		RV CAATTTCGGTCGCCTGGTAGT	55	
ermB	139	FW AAAACTTACCCGCCATAC CA	60	
		RV TTTGGCGTGTTTCATTGC TT	00	
m of A	186	FW ATACCCCAG CACTCAATTCG	50	
mefA		RV CAATCACAGCACCCA ATACG	39	
hla	211	FW ATGTGCAGYACCAGTAARGTKATGGC	57.5	
bla _{TEM}		RV ATCACKCGGRTCGCCNGGRAT	37.3	
hla	195	FW CGGATGGTTTGAAGGGTTTATTAT	57	
bla _{OXA}		RV TCTTGGCTTTTATGCTTGATGTTAA	57	
11	190	FW GGCTTCGTGATGCCTGCTT	57	
11111		RV CATTCCTGGCCGTGGTTCT	57	
intl2	143	FW GTTATTTTATTGCTGGGATTAGGC	57	
		RV TTTTACGCTGCTGTATGGTGC	57	
traA	272	FW AAGTGTTCAGGGTGCTTCTGCGC	(\mathbf{c})	
		RV GTCATGTACATGATGACCAAAA	62	
trbC	255	FW CGGYATWCCGSCSACRCTGCG	60	
		RV GCCACCTGYSBGCAGTCMCC	00	
160 PDNA	193	FW CCTACGGGAGGCAGCAG	55	
16S rKNA		RV TTACCGCGGCTGCTGGCAC	33	

Table S3 Primers and PCR conditions for gene analyses.

Fig. S1 The FTIR spectrum of polystyrene beads.

Fig. S2 The schematic diagram showing the experimental set-up of N/MPs exposure.

Intracellular ROS production measurement

The mixtures, drawn from every sample bottle, were centrifuged at 10000 rpm for 10 min. The supernatant was removed and the pellets were washed with 0.1 M phosphate buffer (pH 7.4) for 3 times. Subsequently, the pellets were resuspended in 0.1 M phosphate buffer containing 50 μ M 2, 7-Dichlorodi-hydrofluorescein diacetate (DCFH-DA) and incubated at 30 ± 1 °C in dark for 30 min. After removing the phosphate buffer containing DCFH-DA, the pellets were washed three times with 0.1 M phosphate buffer. Finally, the pellets were resuspended in 0.1 M phosphate buffer. The fluorescence intensity was monitored using a microplate reader (BioTek, USA) with 485 nm excitation and 525 nm emission filter.

Lactate dehydrogenase release assay

The LDH activity were assayed using LDH release assay kit (Roche Applied Science) according to the manufacturer's instructions. Briefly, the leachate, drawn from every sample bottle, were centrifuged at 5500 rpm for 3 min. Then the supernatants were seeded on a 96-well plate, followed by the addition of 50 μ L of substrate mix (Roche Applied Science). After 30 min of incubation at room temperature in dark, 50 μ L of stop solution (Roche Applied Science) was added to each well. The absorbance was monitored at 490 nm using a microplate reader (BioTek, USA).

Fig. S3 Rarefaction curves of all the samples.

Fig. S4 The relative abundance of ARG-associated genera based on total 16S rRNA gene sequences for each presented taxa. The number denotes that the increased percentage of total ARG-associated genera abundances in each N/MP group compared to the control.