Supporting Information

Oxidation and adsorption of antimony(III) from surface water using a novel Al₂O₃-supported Fe-Mn binary oxides nanoparticles: Effectiveness, dynamic quantitative mechanisms, and life cycle analysis

Yang Bai, Fan Wu, Yanyan Gong*

Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China

*Corresponding author. E-mail address: yanyangong@jnu.edu.cn (Y. Gong).

Content

- Section S1. Preparation of Fe-Mn@Al₂O₃
- Section S2. Sorption kinetic models
- Section S3. Sorption isotherm models
- Section S4. Calculation of the total oxidation efficiency of Fe-Mn@Al₂O₃ and Fe-Mn+Al₂O₃ towards Sb(III)
- Table S1 Fe:Mn molar ratios and Fe:Al₂O₃ molar ratios of different Fe-Mn@Al₂O₃
- **Table S2** The specific surface area, pore size, and pore volume of Fe-Mn, Al₂O₃, and Fe-Mn@Al₂O₃ with different Fe:Al₂O₃ molar ratios
- Table S3 Preparation costs of Fe-Mn@Al₂O₃ with different Fe:Al₂O₃ molar ratios
- Table S4 Pseudo-first-order, pseudo-second-order, intraparticle diffusion model, and external mass transfer models applied for simulating Sb sorption kinetics and the corresponding fitting parameters
- Table S5 Regression parameters of sorption isotherm data of Sb onto Fe-Mn@Al₂O₃ by

 Langmuir and Freundlich models

Table S6 XPS result of Fe-Mn@Al₂O₃ before and after adsorption of Sb(III).

- Table S7 Concentrations of different Sb species on Fe-Mn@Al₂O₃ and in aqueous at different time intervals
- Fig. S1 The actual contents of Fe, Mn, and Al in Fe-Mn@Al₂O₃ by EDS.
- Fig. S2 The environmental impact contributions of all material and energy inputs with various Fe:Al₂O₃ molar ratios.

Fig. S3 Effects of Fe-Mn@ Al₂O₃ dosage on total Sb adsorption.

Fig. S4 Net electric charges of Fe-Mn@Al₂O₃ as a function of pH.

Fig. S5 The ratios of Mn species (Mn(II), Mn(III), and Mn(IV)) to total Mn over reaction.

Section S1. Preparation of Fe-Mn@Al₂O₃

In brief, under vigorous magnetic stirring and N₂ purging, 40 mL FeSO₄ solution (0.05 mol/L) was added into 300 mL deionized water with 0.41 g of Al₂O₃. After mixing for 10 min, 40 mL of KMnO₄ solution (0.0167 mol/L) was added dropwise into the mixture under vigorous stirring. Then, a 5 mol/L NaOH solution was added till a pH value of 7–8. The suspension was continuously stirred for 1 h, and sealed and aged in dark for 12 h to ensure complete reaction and full growth of the particles. Finally, the solids settled by gravity were washed three times with deionized water and vacuum-dried in a freeze drier (SCIENTZ-10N, Ningbo, China) at -40 °C. The resultant composite contained 0.22 g Fe-Mn binary oxides and 0.41 g alumina oxide (i.e., a Fe:Al₂O₃ molar ratio of 1:2). The amounts of Al₂O₃ added in the system were changed to 0.20 g, 0.82 g, and 2.00 g under otherwise identical conditions to prepare Fe-Mn@Al₂O₃ with a Fe:Al₂O₃ molar ratio of 1:1, 1:4, and 1:10, respectively.

Section S2. Sorption kinetic models

Several kinetic models are applied to simulate the Sb sorption kinetic data. The commonly used pseudo-first-order (**equation 1**) and pseudo-second-order kinetic models (**equation 2**)¹ are given as follows:

$$In(q_e - q_t) = Inq_e - K_1 t \tag{1}$$

$$\frac{t}{q_t} = \frac{1}{K_2 q_e^2} + \frac{t}{q_e}$$
(2)

where $q_t (mg/g)$ and $q_e (mg/g)$ are the sorbed amounts of Sb at time *t* (h) and equilibrium, respectively, and K_1 (h⁻¹) and K_2 (g/(mg·h) are pseudo-first-order and pseudo-second-order sorption rate constants, respectively.

The Weber and Morris intraparticle diffusion model is based on Fick's second law of diffusion and described by **equation 3**:²

$$q_t = k_i t^{0.5} + C_i \tag{3}$$

where k_i is the intraparticle diffusion rate constant (mg/(g·h^{-0.5})) and C_i is the intercept related to the boundary layer effect (mg/g). The values of K_i and C_i can be obtained from the slope and intercept of the linear plots of q_t versus $t^{0.5}$.

The external mass transfer model is described by **equation 4**:³

$$-\frac{dC}{dt} = k_f a (C - C_s) \tag{4}$$

where k_f is the mass transfer coefficient (cm/s), *C* and *C_s* are the concentration of Sb in bulk solution and at interface (mg/L), respectively, and *a* (m²/m³) is the specific area available for mass transfer per unit volume of the contactor (2.26×10⁵ m²/m³);

Assume the antimony sorption fits linear isotherm (equation 5):

$$q_e = \frac{q_m k C_s}{1 + C_s} \tag{5}$$

where k is the sorption equilibrium coefficient, q_m is the maximum sorption capacity of Fe-Mn@Al₂O₃ (mg/g), and q_e is the adsorption capacity which can be calculated by the following **equation 6**:

$$q_e = \frac{V}{m}(C_0 - C_s) \tag{6}$$

where *V* is the contactor volume (0.05 L), *m* is the mass of Fe-Mn@Al₂O₃, and C_0 is the initial Sb concentration in bulk solution (mg/L). Combine equations 4-6, yielding **equation** 7:

$$-\frac{dc}{dt} = k_f a \left[C - \frac{1}{2} \left(\sqrt{\left(\frac{q_m m}{V} - C_0 + \frac{1}{k}\right)^2 + \frac{4C_0}{k}} \right) - \frac{q_m m}{V} + C_0 - \frac{1}{k} \right) \right]$$
(7)

To describe the sorption data with the model, the concentration of Sb in the bulk solution (C) is derived as a function of time (t):

$$C = b \exp\left[-ht\right] + C_0 - b \tag{8}$$

In equation 8, h and b are the fitting parameters of the external mass transfer model: $h = k_f a$

and
$$b = C_0 - \frac{1}{2} \left(\sqrt{\left(\frac{q_m m}{V} - C_0 + \frac{1}{k}\right)^2 + \frac{4C_0}{k}} \right) - \frac{q_m m}{V} + C_0 - \frac{1}{k} \right)$$

Thus equation 8 is applied to fit the experimental results with *h* and *b* as fitting parameters.

Section S3. Sorption isotherm models

Langmuir (equation 9) and Freundlich (equation 10) models were applied to fit the sorption isotherm data.

$$q_e = \frac{q_m K_L C_e}{1 + K_L C_e} \tag{9}$$

$$q_e = K_F C_e^{\frac{1}{n}} \tag{10}$$

where q_e and C_e represents the equilibrium Sb uptake (mg/g) and the equilibrium concentration of Sb in the solution (mg/L), respectively, q_m is the maximum adsorption capacity of Fe-Mn@Al₂O₃ (mg/g), K_L is the Langmuir constant (mg/L), K_F is the Freundlich affinity coefficient ((mg/g)/(mg/L)ⁿ), and *n* is the exponential coefficient.

Section S4. The total oxidation efficiencies of Fe-Mn@Al₂O₃ and Fe-Mn+Al₂O₃ towards Sb(III)

The total oxidation efficiencies of Fe-Mn@ Al_2O_3 and Fe-Mn+ Al_2O_3 towards Sb(III) are calculated based on mass balance.

- (1) Reaction conditions: Initial Sb(III) concentration = Total Sb concentration = 5000 μ g/L, solution volume = 50 mL, Fe-Mn@Al₂O₃ =100 mg/L, Fe-Mn+Al₂O₃ = 100 mg/L (Fe-Mn = 33 mg/L and Al₂O₃ = 67 mg/L), and initial solution pH = 6.4.
- (2) Equilibrium aqueous Sb(III) concentration = 242.4 μ g/L for Fe-Mn@ Al₂O₃ and 587.7 μ g/L for Fe-Mn+Al₂O₃.
- (3) The Sb-laden Fe-Mn@Al₂O₃ and Sb-laden Fe-Mn+Al₂O₃ were collected at the end of the experiment, the sample was gently rinsed twice with deionized water to remove soluble Sb, dissolved in 50 mL of 9.6 mol/L HCl solution, and analyzed for aqueous Sb(III) concentrations. Dissolved Sb(III) concentration = 235.1 μg/L for Fe-Mn@Al₂O₃ and 523.4 μg/L for Fe-Mn+Al₂O₃.
- (4) The initial total Sb = 5000 μ g/L× 0.05 L = 250 μ g For Fe-Mn@Al₂O₃, the Sb(III) content after reaction = (242.4+235.1) μ g/L× 0.05 L = 23.88 μ g For Fe-Mn+Al₂O₃, the Sb(III) content after reaction = (587.7+523.4) μ g/L× 0.05
- (5) For Fe-Mn@Al₂O₃, the total oxidation efficiency towards Sb(III) = $(250 \ \mu\text{g} 23.88 \ \mu\text{g})/250 \ \mu\text{g} \times 100\% = 90.4\%$ For Fe-Mn+Al₂O₃, the total oxidation efficiency towards Sb(III) = $(250 \ \mu\text{g} - 55.55)$

 $L = 55.55 \ \mu g$

For Fe-Mn+Al₂O₃, the total oxidation efficiency towards Sb(111) = (250 μ g -55.55 μ g) /250 μ g × 100% = 77.8%

Therefore, till equilibrium, the total oxidation efficiency towards Sb(III) was 90.4% for Fe-Mn@Al₂O₃ and 77.8% for Fe-Mn+Al₂O₃.

	Fe:Mn r	nolar ratios	Fe:Al ₂ O ₃ molar ratios		
Composites	Theoretical	Measured	Theoretical	Measured values	
	values	values	values		
Fe-Mn		(2.83±0.02):1			
Fe-Mn@Al ₂ O ₃ (1:1)		(2.96±0.06):1	1:1	1:(1.05±0.01)	
Fe-Mn@Al ₂ O ₃ (1:2)	3:1	(2.91±0.12):1	1:2	1:(1.92±0.13)	
Fe-Mn@Al ₂ O ₃ (1:4)		(2.85±0.02):1	1:4	1:(4.18±0.18)	
Fe-Mn@Al ₂ O ₃ (1:10)		(2.89±0.09):1	1:10	1:(9.78±0.09)	

 Table S1 Molar ratios of Fe:Mn and Fe:Al₂O₃ for different types of Fe-Mn@Al₂O₃.

Table S2 Specific surface areas, pore sizes, and pore volumes of Fe-Mn, Al ₂ O ₃ , and
Fe-Mn@Al ₂ O ₃ at different Fe:Al ₂ O ₃ molar ratios.

	Specific surface	Pore volume		
Composites	area (m²/g)	(cm ³ /g)	Pore size (nm)	
Al ₂ O ₃	265.53	0.493	9.34	
Fe-Mn	208.54	0.419	7.44	
$Fe-Mn@Al_2O_3(1:1)$	230.84	0.486	8.09	
Fe-Mn@Al ₂ O ₃ (1:2)	225.88	0.471	8.16	
Fe-Mn@Al ₂ O ₃ (1:4)	221.16	0.464	8.39	

Fe:Al ₂ O ₃ molar ratios	Preparation costs ^a (CNY/t)
1:0	8715
1:1	5957
1:2	5038
1:4	4303
1:10	3701

Table S3 Preparation costs of Fe-Mn@Al₂O₃ with different Fe:Al₂O₃ molar ratios.

^a The preparation cost was calculated based on the precursor (industrial grade) costs without considering the operational expenses. The market price was 3200 CNY/t for Al₂O₃ (98.6%), 410 CNY/t for FeSO₄·7H₂O (98.0%), and 15000 CNY/T for KMnO₄ (99.3%).

Table S4 Pseudo-first-order, pseudo-second-order, intraparticle diffusion, and external mass transfer models applied for simulating total Sb

 sorption kinetics and the corresponding fitting parameters (Errors given as standard deviation).

Kinetic models	Parameters			R ²	ARE ⁱ	NSD ⁱ
Pseudo-first-order	$K_{I^a}(\mathbf{h}^{-1})$	$q_e^{b}(\mathrm{mg/g})$	$h_l^c = K_l q_e (\text{mg/(g·h)})$	0.0524	25.00	52.01
model	0.1386±0.0117	1.32±0.36 0.1829		0.9324	23.09	52.71
Pseudo-second-order	K_2^a (g/(mg·h))	$q_e^{\ b}(\mathrm{mg/g})$	$h_2^c = K_2 q_e^2 (\mathrm{mg/(g\cdot h)})$	0.0007	12.11	22.07
model	0.7140±0.1871	8.09±0.06	46.73	0.9997	12.11	23.07
	First stage (0, 10 min)	k_{I}^{d} (mg/(g·h ^{0.5}))	$C_l^{\rm e}$ (mg/g)	1 0000	0.02	0.02
	First stage (0-10 mm)	21.1748±0.000	0	1.0000	0.02	0.02
Intraparticle	Second stage (10 min-4 h)	$k_2^d (\text{mg/(g·h^{0.5})})$	$C_2^{\rm e}$ (mg/g)	0.0019	2.85	2.95
diffusion model		0.4785±0.0217	6.49±0.04	0.9918		
		k_{3}^{d} (mg/(g·h ^{0.5}))	$C_{\mathfrak{z}}^{e}(mg/g)$	0.0620	4.05	4.92
	Third stage (4-24 h)	0.1110±0.0215	7.50±0.08	0.9039	4.95	4.82
External mass	$k_f^{\rm f} = h/a^{\rm g} ({\rm cm/s})$	<i>h</i> ^h (1/h)	$b^{ m h}$ (µg/L)	0.0005	11.00	15.76
transfer model	1.49×10 ⁻⁶ ±0.52×10 ⁻⁶	0.3380±0.1179	924.21±104.94	0.9285	11.88	15.76

^a K_I (h⁻¹) is the rate constant of the pseudo-first-order sorption, K_2 (g/(mg·h)) is the pseudo-second-order sorption rate constant. ^b q_e (mg/g) is Sb uptake at equilibrium time. ^c h_I (mg/(g·h)) and h_2 (mg/(g·h)) are the initial rate of the pseudo-first-order sorption and the initial rate of the pseudo-second-order sorption, respectively. ^d k_i (mg/ (g·h^{-0.5})) is the intraparticle diffusion rate constant. ^e C_i is the intercept related to the boundary layer effect (mg/g). ^f k_f (cm/s) is the mass transfer coefficient. ^ga (m²/m³) is the specific surface area available for mass transfer per unit volume of the contactor (2.26×10⁵ m²/m³). ^hh (1/h) and b (mg/L) are the fitting parameters of the external mass transfer model. ⁱ The normalized standard deviation (NSD) and average relative error (ARE) were calculated to indicate the validity of kinetic models, which are defined as:

$$NSD = 100 \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} \left| \frac{(q_{ti}^{\exp} - q_{ti}^{cal})}{q_{ti}^{\exp}} \right|^{2}}$$
$$ARE = \frac{100}{N} \sum_{i=1}^{N} \left| \frac{(q_{ti}^{\exp} - q_{ti}^{cal})}{q_{ti}^{\exp}} \right|$$

where q_{ti}^{exp} and q_{ti}^{cal} (mg/g) are experimental values and calculated values by models of Sb uptake at time *t*, and *N* is the number of measurements. Table S5 Regression parameters of sorption isotherm data of Sb onto Fe-Mn@Al₂O₃ by Langmuir and Freundlich models (Errors given as

standard deviation).

Adsorption isotherm	Sb species	Parameters		R ²	MPSD ^e	HYBRID ^e
		$q_m^a (\mathrm{mg/g})$	b ^b (L/mg)			
Langmuir	Sb(III)	272.22±33.33	0.09±0.03	0.9862	52.10	1239.88
	Sb(V) 66.68±13.34		0.04±0.01	0.9200	64.53	1676.06
		K_F^{c} ((mg/g)/(mg/L) ⁿ)	n ^d			
Freundlich	Sb(III)	29.23±3.05	0.56±0.03	0.9909	74.69	371.97
	Sb(V)	7.69±0.75	0.42±0.02	0.9856	24.79	135.49

^a q_m is the Langmuir maximum sorption capacity (mg/g). ^b b is the Langmuir affinity constant (L/mg). ^c K_F is the Freundlich affinity coefficient ((mg/g)/(mg/L)ⁿ). ^d n is the exponential coefficient. ^e The Marquardt's percent standard deviation (MPSD) and hybrid error function (HYBRID)

indicated the validity of adsorption isotherm:

MPSD =
$$100\sqrt{\frac{1}{N-P}\sum_{i=1}^{N}(\frac{q_{ti}^{exp}-q_{ti}^{cal}}{q_{ti}^{exp}})^2}$$

HYBRID =
$$\frac{100}{N-P} \sum_{i=1}^{N} \left| \frac{(q_{ti}^{exp} - q_{ti}^{cal})^2}{q_{ti}^{exp}} \right|$$

where q_{ii}^{exp} is the experimental data obtained from batch sorption tests (mg/g), and q_{ii}^{cal} is the estimated value from the isotherm for corresponding

 q_{ii}^{exp} (mg/g), N is the number of observations in the experimental sorption isotherm, and P is the number of parameters in the regression model.

	Composition (at.%)						
Sample _	Al	0	Fe	Mn	Sb		
Fe-Mn@Al ₂ O ₃	9.1	65.2	19.6	6.1	0		
Sb laden Fe-Mn@Al ₂ O ₃ ^a (1 h)	9.2	60.2	19.6	5.6	5.4		
Sb laden Fe-Mn@Al ₂ O ₃ ^a (4 h)	9.2	59.9	20.0	5.2	5.7		
Sb laden Fe-Mn@Al ₂ O ₃ ^a (8 h)	9.6	60.1	20.1	4.6	5.5		
Sb laden Fe-Mn@Al ₂ O ₃ ^a (48 h)	9.7	59.6	20.3	4.2	5.5		

Table S6 XPS results of Fe-Mn@Al₂O₃ before and after sorption of Sb(III).

Note: Sb-laden Fe-Mn@Al₂O₃ were prepared under the following experimental conditions: Fe-Mn@Al₂O₃ = 100 mg/L, Sb(III) concentration = 5 mg/L, pH = 6.4, and reaction time = 1 h, 4 h, 8 h, and 48 h, respectively.

Time (h)	$S_{Sb(total)}^{a}$ (µg/L)	$S_{Sb(III)}^{a}$ (µg/L)	$S_{Sb(V)}^{a}$ (µg/L)	$C_{Mn(II)}^{b}$ (µg/L)	C _{Sb(total)} ^b (µg/L)	C _{Sb(III)} ^b (µg/L)	$C_{Sb(V)}^{b}$ (µg/L)
0		-	-	-	5006.7	4954.0	-
1	2465.1	522.4	1942.7	536.3	2461.9	1925.0	536.9
4	3389.6	442.7	2966.9	979.1	1558.6	768.8	789.8
8	3315.0	406.8	2908.2	1181.8	1593.1	506.9	1086.2
48	2833.5	235.1	2598.4	1456.8	2045.4	242.4	1803.0

Table S7 Concentrations of different Sb species on Fe-Mn@Al₂O₃ and in aqueous phase at different time intervals.^a

^aSb-laden Fe-Mn@Al₂O₃ at different time were dissolved in 50 mL 9.6 mol/L HCl solution and analyzed for aqueous Sb species. ^bS_{Sb(total)}, S_{Sb(III)},

and S_{Sb(V)} are contents of Sb adsorbed onto Fe-Mn@Al₂O₃. ^cC_{Mn(II)}, C_{Sb(total)}, C_{Sb(III)}, and C_{Sb(V)} are concentrations of Mn(II), total Sb, Sb(III), and

Sb(V)	in	aqueous	phase	at	different	reaction	times		respectively.
		uqueous	Pricese	<i>uu</i>		reaction	ciiii eo	,	respectively.

Fig. S1 SEM-EDS spectra of (a) Al_2O_3 , (b) Fe-Mn, and (c) Fe-Mn@Al_2O_3 (a

Fe:Al₂O₃ molar ratio = 1:2).

Fig. S2 The environmental impact contributions of all materials and energy inputs for Fe-Mn@Al₂O₃ with various Fe:Al₂O₃ molar ratios: (a) 1:0, (b) 1:1, (c) 1:2, (d) 1:4, and (e) 1:10. Potential impact categories are ozone depletion (OD), global warming (GW), smog (PS), acidification (AC), eutrophication (EU), carcinogenic (HHC), noncarcinogenic (NC), respiratory effects (RE), ecotoxicity (ET), and fossil fuel depletion (FF).

Fig. S3 Effects of Fe-Mn@Al₂O₃ dosage on total Sb removal from simulated surface water. Experimental conditions: Initial Sb(III) concentration = 5 mg/L, Fe-Mn@Al₂O₃ (Fe:Al₂O₃ molar ratio = 1:2) = 100 mg/L, 200 mg/L, and 600 mg/L, reaction volume = 50 mL, pH = 6.4, and equilibrium time = 48 h. Data plotted as mean of triplicates and error bars (calculated as standard deviation) indicate data reproducibility.

Fig. S4 Net electric charges of Fe-Mn@Al₂O₃ as a function of pH. Experimental conditions: Fe-Mn@Al₂O₃ (Fe:Al₂O₃ molar ratio = 1:2) = 100 mg/L, reaction volume = 50 mL, pH = 5.0, 6.0, 7.0, 8.0, 9.0, and 10.0. Data plotted as mean of triplicates and error bars (calculated as standard deviation) indicate data reproducibility.

Fig. S5 The ratios of Mn species (Mn(II), Mn(III), and Mn(IV)) to total Mn over reaction.

Notes and references

- 1 Y. Huang, S. Xia, J. Lyu and J. Tang, Highly efficient removal of aqueous Hg²⁺ and CH₃Hg⁺ by selective modification of biochar with 3-mercaptopropyltrimethoxysilane, *Chem. Eng. J.*, 2019, **360**, 1646-1655.
- 2 F.-C. Wu, R.-L. Tseng and R.-S. Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, *Chem. Eng. J.*, 2009, **153**(1), 1-8.
- J. Luo, X. Luo, J. Crittenden, J. Qu, Y. Bai, Y. Peng and J. Li, Removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO₂), *Environ. Sci. Technol.*, 2015, **49**(18), 11115-11124.