Supplementary information

Interaction between a nano-formulation of atrazine and the rhizosphere bacterial community: atrazine degradation and bacterial community alterations

[©]Yujia Zhai, [©]*Fazel Abdolahpur Monikh, [©]Juan Wu, [‡]Renato Grillo, ^βDaniel Arenas-Lago, ^ΩGopala Krishna Darbha, [©]Martina G. Vijver, ^{©,¥}Willie J.G.M. Peijnenburg

[©] Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA, Leiden, The Netherlands

⁺ Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), 15385-000, Ilha Solteira, SP, Brazil.

 $^\beta$ Department of Plant Biology and Soil Science, University of Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain

^Ω Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian
 Institute of Science Education and Research Kolkata, Kolkata, Mohanpur, West Bengal,
 India- 741246

[¥] National Institute of Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven, The Netherlands

*Corresponding authors: Fazel Abdolahpur Monikh <u>f.a.monikh@cml.leidenuniv.nl</u>

S1. Nano-pesticides Synthesis

Atrazine (ATZ) loaded poly-ε-caprolactone nano-capsules (NPATZ) were prepared according to the precipitation method, as described by Grillo et al. (2012)¹. This method involves the mixing of an organic phase (composed of 100 mg of polymer (poly-ε-caprolactone), 200 mg of triglycerides of capric and caprylic acids (Myritol 318), 50 mg of sorbitan monostearate surfactant (Span 60), 10 mg of atrazine and 30 mL of acetone) and an aqueous phase (composed of 60 mg of polysorbate 80 (Tween 80) and 30 mL of deionized water). The resulting suspension was maintained under magnetic stirring for 10 minutes. After this, the acetone was evaporated under reduced pressure using a rotary evaporator to a final volume of 10 mL. Thus, the concentration of herbicide was 1 mg mL⁻¹, and it was stored in amber flasks at room temperature (25 °C).

S2. Release kinetics assays

The kinetic experiments were designed to assess the release profiles of the herbicide ATZ from the NPATZs in water and soil. All measurements were the results of five replicates. The experiments were run under dilution sink conditions. The ATZ released in water was expressed as a percentage, and results plotted as a function of time (minutes). In addition, the semi-empirical Korsmeyer–Peppas model was applied to the herbicide release curves in order to identify the type of mechanism involved. The water experiment employed a system consisting of two compartments (donor and receptor), maintained under gentle agitation. A cellulose membrane (Spectrapore, with 1000 Da molecular exclusion pore size) separated the nano-pesticides (1 mL) in the donor compartment from the receptor compartment containing 50 mL of water (pH=7). The system was maintained under magnetic stirring (350 rpm) at 30 °C. Aliquots were withdrawn at different time intervals and then analyzed by Varian Cary 50 Spectrophotometer.

S3. ATZ extraction and analysis

ATZ extraction from soil samples was carried out using the Navarro et al. (2000) procedure. ² Briefly, ATZ was extracted by adding acetonitrile and dichloromethane to the soil, and sonicating the mixture. The suspensions were shaken mechanically in an Erlenmeyer flask for 2 h. The organic phase was filtered and evaporated to dryness. The residue was dissolved in acetone, and the solution was injected into an HPLC (Agilent 1100 series). 20 μ l of sample was injected into a 4 by 250 mm Hypersil ODS column. We used acetonitrile/water as mobile phase at flow rate of 1 ml per minutes according to the method reported previously. ³

S4. Composition of plant culture media

- Solution A: 94.5 g Ca(NO₃)₂·4H₂O, 60.7 g KNO₃ dissolved in 1 L deionized water (100 times)
- Solution B: 49.3 g MgSO₄·7H₂O, 11.5 g NH₄H₂PO₄ powder dissolved in 1 L deionized water (100 times)
- Solution C: 0.1004 g Mn(NO₃)₂·4H₂O, 0.119 g Zn(NO₃)₂·6H₂O, 0.005 g
 CuSO₄·5H₂O, 0.002 g MoNa₂O₄·2H₂O dissolved in 1 L deionized water (400 times)
- Solution D: 0.07416 g H₂BO₃ dissolved in 500 mL deionized water (800 times), dissoved in hot water.

- Solution E: 1.1122 g FeSO₄·7 H₂O dissolved in 500 mL deionized water (800 times) The culture solution (pH was measured and adjusted at 6) is composed by adding 2.5 mL solution A, 2.5 mL solution B, 2.5 mL solution C, 1.25 mL solution D to one liter of deionized water.

S5. Physicochemical properties of the soil used in this study

The physicochemical properties of the soil used in this study is reported in Table S1.

• The pH was determined according to the method reported by Slattery et al. (1999).⁴ The soil:water and soil:KCl ratio was 1:2.5 for both measurements.

 Organic carbon was analysed according to the method reported by Walkley and Black (1934).⁵

• The cation exchange capacity (CEC) and exchangeable cation content were determined according to the method reported by Hendershot and Duquette (1986).⁶ Al, Ca, K, Mg and Na were extracted with 0.1 M BaCl₂, and the concentrations were determined by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) (PerkinElmer Optima 4300 DV, PerkinElmer, Waltham, MA, USA).

• The total metal contents were extracted with a mixture of HNO_3 and HCI (1:3 v/v) in Teflon reactors under 10 bar, 180 °C and 35 min as operational conditions of the microwave oven. The concentration in the extracts was determined by ICP-OES as above.

	Units	Soil	
рН _{н20}	-	8.35 (0.04)	
pΗ _{κci}	-	7.43 (0.04)	
Organic C	%	2.16 (0.09)	
CEC		0.386 (0.009)	
Na⁺		0.054 (0.001)	
K⁺	$cmol^{(+)}ka^{-1}$	0.032 (0.001)	
Ca ²⁺		0.062 (0.001)	
Mg ²⁺		0.102 (0.002)	
Al ³⁺		0.137 (0.003)	
Element	Total concentration		
As		udl	
Cd		udl	
Со		udl	
Cr		1.41 (0.24)	
Cu		2.24 (0.03)	
Fe	mg kg ⁻¹	8284 (435)	
Mn		172.91 (5.84)	
Ni		30.53 (10.61)	
Pb		udl	
Ti		357.7 (23.6)	
Zn		8.97 (1.48)	

Table S1. Soil characteristics	(standard error)
--------------------------------	------------------

CEC: Cation Exchange Capacity, udl: under detection limit

S6. Experimental design

The ATZ was dissolved in 5 ml acetone and further diluted to 50 ml using Milli-Q (MQ) water. To spike the soil, 15 ml of the ATZ or NPATZ suspensions were carefully and homogeneously dropped into the soil to reach a final concentration of 0.3, 1.5, or 3 mg per kg soil. The exposure to ATZ and NPATZ at each concentration was performed with three repetitive exposure durations separated by a two-week interval (week 2, 4 and 6 after exposure), representing a short-term, medium and long-term exposure scenario.⁷ Control experiments were also performed similarly, however without exposure to ATZ or NPATZ. Another control experiment was carried out by exposing the plant samples to soil containing only the polymeric carriers (PNC) without the active ingredient (ATZ) at 1.5 mg kg⁻¹ soil. In total eight treatments in triplicate with three exposure durations were set up, which resulted in 72 pots with three individuals planted in each pot. The plants were watered every two days and 10 mL of 1/4 Hoagland solution was added into the pots once a week. Plants and the associated rhizosphere soils in each pot were harvested after 2, 4 and 6 weeks. The soil loosely adhering to the plant roots were discarded by vigorous shaking the roots. The soil that was tightly adhered to the plant roots were collected as rhizosphere soils. All the experiments including the pre-growth of seedlings were performed in a climate room at a 20/16 °C day/night temperature and 60% relative humidity set to a 16 h photoperiod until the associated rhizosphere soils were collected.

Figure S1. Schematic illustration of the experimental set-up. The soil was spiked with atrazine (ATZ) and ATZ nano-pesticides (NPATZ) and used to expose the *L. sativa* rhizosphere (3 replicates and 7 plants per treatment) at nominal concentrations of 0.3, 1.5 and 3 mg kg⁻¹ soil for short-term (2 weeks), medium-term (4 weeks) and long-term (6 weeks) exposure. In the short-term exposure, the plants were exposed once at the beginning of the exposure experiment and harvested after 2 weeks. For the medium-term exposure, the plants were exposed at the beginning and after two weeks. The plant's rhizospheres were harvested after 4 weeks. For the long-term exposure, the plants were exposed at the beginning, after 2 weeks and after 4 weeks. The plant's rhizospheres were harvested after 6 weeks of exposure. The plants were watered every two days in all treatments. Control experiments in which the plants were exposed to water or to polymeric carriers without ATZ were also performed.

S7. DNA concentration

Time	Treatments	Sample name	DNA concentration (ng/µl)
		Y19070801	24.8
	СК	Y19070802	19.9
		Y19070803	18.3
	ATZ_L	Y19070804	22.0
		Y19070805	40.5
		Y19070806	17.3
	ATZ_M	Y19070807	25.8
		Y19070808	51.6
		Y19070809	45.9
		Y19070810	69.2
	ATZ_H	Y19070811	54.4
Short-term		Y19070812	19.7
exposure		Y19070813	25.8
	PNC	Y19070814	36.2
		Y19070815	19.8
	NPATZ_L	Y19070816	35.4
		Y19070817	22.4
		Y19070818	19.7
	NPATZ_M	Y19070819	19.6
		Y19070820	29.4
		Y19070821	12.4
	NPATZ_H	Y19070822	43.0
		Y19070823	16.1
		Y19070824	27.8
	СК	Y19070825	14.5
Medium-term		Y19070826	19.2
		Y19070827	23.8
	ATZ_L	Y19070828	15.9
exposure		Y19070829	18.7
		Y19070830	23.5
	ATZ_M	Y19070831	22.2

Table S2. Concentration of DNA extractions in each sample.

		Y19070832	32.2
		Y19070833	24.1
		Y19070834	16.0
	ATZ_H	Y19070835	44.4
		Y19070836	28.3
		Y19070837	24.0
	PNC	Y19070838	28.8
		Y19070839	14.6
	NPATZ_L	Y19070840	9.6
		Y19070841	13.8
		Y19070842	15.2
		Y19070843	33.2
	NPATZ_M	Y19070844	17.6
	_	Y19070845	14.7
	-	Y19070846	22.4
	NPATZ H	Y19070847	20.0
	_	Y19070848	28.0
		Y19070849	58.3
	СК	Y19070850	33.7
		Y19070851	38.9
		Y19070852	34.8
	ATZ_L	Y19070853	42.6
		Y19070854	50.2
		Y19070855	51.3
	ATZ_M	Y19070856	49.3
		Y19070857	52.5
	ATZ_H	Y19070858	46.1
		Y19070859	48.8
Long-term		Y19070860	38.8
exposure		Y19070861	35.9
	PNC	Y19070862	48.4
		Y19070863	51.9
	NPATZ_L	Y19070864	47.4
		Y19070865	63.6
		Y19070866	59.4
	NPATZ_M	Y19070867	58.6
		Y19070868	47.5
		Y19070869	42.4
	NPATZ_H	Y19070870	69.6
		Y19070871	69.6
		Y19070872	69.2

Time	Treatments	Sample_name	Biosample_accession	Accession
-		Y19070801	SAMN14271685	SRR11236976
	СК	Y19070802	SAMN14271686	SRR11236975
		Y19070803	SAMN14271687	SRR11236964
		Y19070804	SAMN14271688	SRR11236953
	ATZ L	Y19070805	SAMN14271689	SRR11236942
	···	Y19070806	SAMN14271690	SRR11236931
-		Y19070807	SAMN14271691	SRR11236920
	AT7 M	Y19070808	SAMN14271692	SRR11236909
	, _	Y19070809	SAMN14271693	SRR11236906
		V19070809	SAMN14271694	SRR11236905
	ΔΤΖ Η	V19070810	SAMN14271695	SRR11236974
		V10070812	SAMN14271095	SRR11230374
		V10070812	SAMN14271607	SPP11226072
exposure	DNC	¥19070815	SAIVIN14271097	SRR11230972
	PNC	¥19070814	SAIVIN14271698	SRR11230971
		¥19070815	SAIVIN14271699	SRR11236970
		¥19070816	SAMIN14271700	SRR11236969
	NPATZ_L	Y19070817	SAMN142/1/01	SRR11236968
		Y19070818	SAMN142/1/02	SRR11236967
		Y19070819	SAMN14271703	SRR11236966
	NPATZ_M	Y19070820	SAMN14271704	SRR11236965
		Y19070821	SAMN14271705	SRR11236963
		Y19070822	SAMN14271706	SRR11236962
	NPATZ_H	Y19070823	SAMN14271707	SRR11236961
		Y19070824	SAMN14271708	SRR11236960
		Y19070825	SAMN14271709	SRR11236959
	СК	Y19070826	SAMN14271710	SRR11236958
		Y19070827	SAMN14271711	SRR11236957
		Y19070828	SAMN14271712	SRR11236956
	ATZ_L	Y19070829	SAMN14271713	SRR11236955
		Y19070830	SAMN14271714	SRR11236954
		Y19070831	SAMN14271715	SRR11236952
	ATZ_M	Y19070832	SAMN14271716	SRR11236951
		Y19070833	SAMN14271717	SRR11236950
	ATZ_H	Y19070834	SAMN14271718	SRR11236949
		Y19070835	SAMN14271719	SRR11236948
Medium-		Y19070836	SAMN14271720	SRR11236947
term	PNC	Y19070837	SAMN14271721	SRR11236946
exposure		Y19070838	SAMN14271722	SRR11236945
		Y19070839	SAMN14271723	SRR11236944
-		Y19070840	SAMN14271724	SRR11236943
	NPATZ L	Y19070841	SAMN14271725	SRR11236941
		Y19070842	SAMN14271726	SRR11236940
	NPATZ M	Y19070843	SAMN14271727	SRR11236939
		Y19070844	SAMN14271728	SRR11236938
-	<u></u>	V19070845	SAMN14271729	SRR11236937
	NPATZ_H	V19070846	SAMN14271725	SRR11236936
		V19070847	SAMN14271730	SRR11236935
		V1007004/	SAMN14271731	CRR11220222
		V10070940	SAMMI14271732	CDD11726022
Long-term exposure -		V10070950	SAIVIN14271733	
		1190/0850	SAIVIN142/1/34	SUD1122C020
		1190/0851	SAIVIN142/1/35	SKK11236930
	ATZ_L -	¥19070852	SAIVIN142/1/36	SKK11236929
		1 119070853	SAIVIN 14271737	28811236928

Table S3. Sample details of each sequencing library submitted to NCBI database.

		Y19070854	SAMN14271738	SRR11236927
	ATZ_M	Y19070855	SAMN14271739	SRR11236926
		Y19070856	SAMN14271740	SRR11236925
		Y19070857	SAMN14271741	SRR11236924
		Y19070858	SAMN14271742	SRR11236923
	ATZ_H	Y19070859	SAMN14271743	SRR11236922
		Y19070860	SAMN14271744	SRR11236921
		Y19070861	SAMN14271745	SRR11236919
-	NP	Y19070862	SAMN14271746	SRR11236918
		Y19070863	SAMN14271747	SRR11236917
	NPATZ_L	Y19070864	SAMN14271748	SRR11236916
		Y19070865	SAMN14271749	SRR11236915
		Y19070866	SAMN14271750	SRR11236914
	NPATZ_M	Y19070867	SAMN14271751	SRR11236913
		Y19070868	SAMN14271752	SRR11236912
		Y19070869	SAMN14271753	SRR11236911
	NPATZ_H	Y19070870	SAMN14271754	SRR11236910
		Y19070871	SAMN14271755	SRR11236908
		Y19070872	SAMN14271756	SRR11236907

S8. Data analysis

Quality control was performed by filtering the chimeras, singletons, chloroplasts, mitochondria, archaea and eukaryotes. The sampling depth heterogeneity was corrected by performing rarefaction. Qualified sequences were clustered into Operational Taxonomic Units (OTUs) based on the 97% sequence similarity level. ⁸ The taxonomic assignment was conducted using the UCLUST consensus taxonomy classifier. Sequences were aligned with Python Nearest Alignment Space Termination (PyNAST) to build a phylogenetic tree. QIIME then assembled a table of OTU abundances in each sample with taxonomic identifiers for each OTU. The core OTUs were selected based on the NCBI annotated ATZ-degrading bacterial genera, with presence in 100% of all the replicates for each treatment. Afterwards, phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt)⁹ was used to translate the 16S rRNA gene amplicon data sets into predicted metagenomes to predict the functional capabilities of bacterial communities (PICRUSt v1.0.0 pipeline in QIIME). The predicted metagenomes were further annotated using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. ¹⁰ The core functional genes were selected based on the KEGG pathway of ATZ degradation, with presence in 100% of all the replicates for each treatment. The correlation between the core OTUs and functional genes was assessed based on person correlation analysis with significance *p*<0.05. Analyses were conducted using R v3.3.2, Paleontological Statistics (PAST, v3.14), and Statistical Analysis of Metagenomic Profiles (STAMP, v2.1.3).

S9. Spiking the soil with ATZ and NPATZ

The ATZ was dissolved in 5 ml acetone and further diluted to 50 ml using Milli-Q (MQ) water. An aliquot of the NPATZ was dispersed in MQ water and was used as 1 g L⁻¹ stock dispersion. Spiked soil samples were prepared by carefully dropping the dispersion of NPATZ or solution of ATZ into soil surface to reach a final concentration of 1 mg per kg soil. The soil was homogenized by thoroughly mixing the soil for 20 minutes at room temperature.

S10. Bacterial genera and functional genes associated with ATZ and NPTAZ degradation

The bacterial genera and functional genes involved in the degradation pathways of ATZ and NPATZ are given in Figure S2. For short-term exposure, *Pseudomonas* and *Mycobacterium* and functional genes of *atzB*, *atzC*, *atzD*, *atzE* and *atzF* were involved in both ATZ and NPATZ degradation from hydroxyatrazine to CO₂. As the exposure time increased to medium-term exposure, the degradation of ATZ and NPATZ differentiated with each other at the stage of degradation from carboxybiuret to CO₂ (*atzE* and *atzF* were mainly used by *Pesudomonas* and *Acetobacter* for ATZ degradation, and *Janthinobacterium*, *Mycobacterium* and *Arthrobacter* for NPATZ degradation). After long-term exposure, the ATZ degradation pathway is different from NPATZ degradation pathway, with more bacterial genera involved in the processes from Nisopropylammelide to carboxybiuret of NPATZ degradation pathway.

Figure S2. Bacterial genera and functional genes related with ATZ and NPTAZ degradation. Bacterial genera and functional genes in green are related with ATZ degradation. Bacterial genera and functional genes in grey are related with NPATZ degradation. Functional genes in black represent no significant positive correlation with bacterial genera.

References

1. Grillo, R.; dos Santos, N. Z. P.; Maruyama, C. R.; Rosa, A. H.; de Lima, R.; Fraceto, L. F., *Poly*(ε-caprolactone)nanocapsules as carrier systems for herbicides: Physico-chemical characterization and genotoxicity evaluation. Journal of Hazardous Materials **2012**, 231-232, 1-9.

2. Moreno, J. L.; Aliaga, A.; Navarro, S.; Hernández, T.; García, C., *Effects of atrazine on microbial activity in semiarid soil. Applied Soil Ecology* **2007**, *35* (1), 120-127.

3. Satapanajaru, T.; Anurakpongsatorn, P.; Pengthamkeerati, P.; Boparai, H., *Remediation of Atrazine-contaminated Soil and Water by Nano Zerovalent Iron. Water, Air, and Soil Pollution* **2008,** *192* (1), 349-359.

4. Soil Analysis: An Interpretation Manual. 1999; p 388.

5. Walkley, A.; Black, I. A., *An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science* **1934**, *37* (1).

6. Hendershot, W. H.; Duquette, M., *A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Science Society of America Journal* **1986**, *50* (3), 605-608.

7. Zhai, Y.; Hunting, E. R.; Liu, G.; Baas, E.; Peijnenburg, W. J.; Vijver, M. G., Compositional alterations in soil bacterial communities exposed to TiO₂ nanoparticles are not reflected in functional impacts. Environmental research **2019**, *178*, 108713.

8. Liu, G.; Zhang, Y.; van der Mark, E.; Magic-Knezev, A.; Pinto, A.; van den Bogert, B.; Liu, W.; van der Meer, W.; Medema, G., *Assessing the origin of bacteria in tap water and distribution system in an unchlorinated drinking water system by SourceTracker using microbial community fingerprints. Water research* **2018**, *138*, 86-96.

9. Langille, M. G.; Zaneveld, J.; Caporaso, J. G.; McDonald, D.; Knights, D.; Reyes, J. A.; Clemente, J. C.; Burkepile, D. E.; Thurber, R. L. V.; Knight, R., *Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol.* **2013**, *31* (9), 814.

10. Ballou, A. L.; Ali, R. A.; Mendoza, M. A.; Ellis, J.; Hassan, H. M.; Croom, W.; Koci, M. D., Development of the chick microbiome: how early exposure influences future microbial diversity. Frontiers in veterinary science **2016**, *3*, 2.