Supporting Information for

Nanoparticle size and natural organic matter composition determine aggregation behavior of polyvinylpyrrolidone coated platinum nanoparticles

Mithun Sikder¹, Jingjing Wang¹, Brett A. Poulin², Malak Tfaily³, Mohammed Baalousha^{1,*}

¹ South Carolina SmartState Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, USA

² U.S. Geological Survey, Boulder, CO, 80303, USA

³ EMSL

Collection of water samples for NOM isolation

Water samples for natural organic matter (NOM) extraction were collected from four different environments including marshlands, a seepage lake, a blackwater river, and the ocean (Table S1). Water samples were collected from marchlands at the air-water interface from three different sites in the Florida Everglades representing pristine (LOX 8 site, NOM 6), relatively pristine (2B South site, NOM 2), and eutrophic environments (F1 site, NOM 1). Marine water from the surface (Pacific Ocean; NOM 4) was collected at the Natural Energy Laboratory of Hawaii Authority (NELHA) on the island of Hawaii, USA (near Kailua-Kona). At NELHA, surface (5 m depth) oceanic waters were pumped continuously at a rate of more than 0.5 m³ s⁻¹ through high-density polyethylene (HDPE) distribution systems. Water was transferred from HDPE pipelines to the laboratory through polyvinylchloride (PVC) pipes that were flushed continuously for several days before and throughout the study. The temperatures of surface water at NELHA was 24 to 28.5 °C. Water was collected from Williams Lake (MN; NOM 3), a groundwater fed lake in North-Central Minnesota dominated by NOM of autochthonous sources (e.g. algae, bacteria). Lastly, water was collected from the Suwannee River (GA; NOM5), a blackwater river draining the Okeefenokee Swamp.

Solid phase extraction of natural organic matter (NOM)

The hydrophobic organic acid fraction (HPOA) was isolated from the six water samples according to procedure described in Aiken et al. (1992) under ambient atmosphere ¹ and are labeled NOM 1 to 6 as summarized in Table S1. The isolation procedure was consistent with recommendation of the International Humic Substances Society (IHSS) to isolate humic and fulvic

acids. Samples were acidified to pH 2 with 12 N HCl, and loaded onto a pre-cleaned XAD-8 column. Chloride was removed from the HPOA fraction retained on the XAD-8 column by rinsing with high purity water until the conductivity of the effluent was < 700 μ S cm⁻¹. The sample was back eluted off the resin with 0.1 M NaOH through a proton-saturated cation exchange resin (CER; Bio-Rad Laboratories) to remove sodium ions. Eluting the sample directly through a CER column minimized the contact time between the sample and the 0.1 M NaOH to minimize the possibility for oxidation of reduced organic sulfur species ². The pH of de-salted HPOA samples was approximately 3.3. HPOA samples were freeze dried immediately.

UV-vis optical measurement of NOM

Ultraviolet and visible light (UV-vis) absorption spectra were measured from 190 to 800 nm using spectrophotometer (Agilient Technologies, model 8453) and a 1cm quartz cuvette. Sample spectra were measured with respect to a blank spectrum, containing ultra-high purity water (UHPW). The specific ultraviolet absorbance at 254 nm (SUVA₂₅₄) of NOM samples, a proxy aromaticity ³, is defined as the decadic UV absorbance at 254 nm divided by the dissolved organic carbon (DOC) concentration. Decadic absorbance values were converted to absorption coefficient as follows:

$$\alpha_{\lambda} = \frac{A_{\lambda}}{l} \tag{S1}$$

where, α_{λ} is the absorption coefficient (cm⁻¹), A_{λ} is the absorbance, and l is the path length (cm). The SUVA₂₅₄ values were calculated by dividing the decadic absorption coefficient at 254 nm (α_{254}) by DOC concentration and reported in units of L mg⁻¹ m⁻¹.³

NOM ID	NOM Sample	Sampling site description ^a		Weight % ^b				SUVA ₂₅₄	
			С	Н	0	N	S	Ash	$(L mg^{-1} m^{-1})$
NOM 1	Florida Everglades	Eutrophic marshland located in Water conservation	53.1	4.4	39.3	1.3	1.9	2.8	4.0
	F1 site HPOA	Area (WCA) 2A in the northern Everglades.							
		Vegetation dominated by cattails							
NOM 2	Florida Everglades	Relatively pristine marshland located in WCA 2B in	52.2	4.8	40.2	1.6	1.2	7.3	3.2
	2B south HPOA	the northern Everglades. Vegetation dominated by saw							
		grass							
NOM 3	Williams lake	Seepage lake in North-Central Minnesota. Organic	55.2	5.7	36.5	1.8	0.8	2.1	1.9
	HPOA (MN)	matter dominated by autochthonous sources (e.g. algae,							
		bacteria)							
NOM 4	Pacific Ocean	Sample collected at Natural Energy Laboratory of	56.5	6	36	1.1	0.4	1.7	0.8
	HPOA	Hawaii Authority (NELHA) on the island of Hawaii,							
		near Kailua-Kona, from 5 m depth. Organic matter of							
		marine origin							
NOM 5	Suwannee river	Blackwater river draining Okeefenokee Swamp.	51.8	4.4	42.7	0.8	0.5	4.8	4.8
	HPOA (GA)	Sampled at Fargo, Georgia. Vegetation dominated by							
		southern floodplain forest (Quercus, Nyassa,							
		Taxodium)							
NOM 6	Florida Everglades	Pristine marshland in located in LOX 8 wildlife refuge	51	4.9	n.m.	n.m.	0.6	3.5	3.5
	Loxahatchee	area in the northern Everglades.							
	National Wildlife								
	refuge (LOX)								
	HPOA								

Table S1. Sampling site descriptions and chemical characteristics of NOM hydrophobic organic acid (HPOA) samples including elemental analysis and specific ultraviolet absorbance at 254 nm (SUVA₂₅₄).

 $^{\rm a}$ Site description modified from Poulin et al (2017) $^{\rm 4}$

^b Measured by Huffman Hazen Laboratories (Golden, CO); major elemental composition (*i.e.* C, H, O, N, and S) reported as ash-free dry mass

n.m.= not measured

Table S2. Criteria applied for molecular assignment of formulae detected by FT-ICR-M
--

	H/C	O/C	# of N
Tannin	0.5-1.25	0.60-0.95	NA
Carbohydrates	1.5-2.0	0.7-1.0	NA
Lipids	1.7-2.25	<0.22	NA
Lignin/CRAM	0.75-1.5	0.2-0.6	NA
Protein	1.5-2.0	0.2-0.5	N≥1
Aminosugar	1.5-1.75	0.55-0.70	N≥1
Condensed hydrocarbons	0.2-0.75	<0.7	NA

CRAM: carboxyl rich alicyclic molecules

Table S3. Relative abundance (percent of total formulas) of molecules grouped based on heteroatom composition as determined by FT-ICR-MS.

NOM ID	Sampling site	СНО	CHON	CHOS	СНОР	CHONS	CHONP	CHONSP	Unassigned
		(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
NOM 1	Everglades, Site F1, FL	66.1	16.6	7.5	0.4	5.1	3.2	0.3	0.8
NOM 2	Everglades, Site WCA-2BS, FL	61.8	25.6	5.0	0.8	2.9	3.2	0.2	0.5
NOM 3	Williams Lake, MN	65.0	23.4	4.0	4.1	1.9	0.9	0.5	0.2
NOM 4	Pacific Ocean near Hawaii, surface water (NELHA)	67.4	21.7	1.6	2.4	4.4	0.9	1.1	0.4
NOM 5	Suwannee River, GA	73.6	6.4	1.4	1.3	8.1	6.3	0.7	2.1
NOM 6	Everglades, LOX8, FL	68.5	21.0	2.1	1.8	3.9	2.1	0.2	0.4

Unassigned: Formulas did not meet criteria for compound classifications.

Table S4. Relative abundance (percentage of total formulas) of molecules grouped based on compound class of compounds determinedby FT-ICR-MS

NOM ID	Sampling site	Amino sugar (%)	Carb (%)	ConHC (%)	Lignin/ CRAM (%)	Lipid (%)	Protein (%)	Tannin (%)	Unsat HC (%)	Unassigned (%)
NOM 1	Everglades, Site F1, FL	0.8	0.8	24.5	59.0	0.9	2.3	9.8	0.7	1.2
NOM 2	Everglades, Site WCA-2BS, FL	1.1	0.6	19.9	63.4	0.8	3.3	9.4	0.4	1.0
NOM 3	Williams Lake, MN	1.5	0.4	6.6	72.4	1.9	8.0	8.5	0.3	0.4
NOM 4	Pacific Ocean near Hawaii, surface water (NELHA)	1.4	0.3	1.9	79.6	1.5	8.8	5.4	0.6	0.5
NOM 5	Suwannee River, GA	1.0	1.0	25.0	56.3	0.9	2.9	8.9	2.0	1.8
NOM 6	Everglades, LOX8, FL	0.9	0.7	20.3	62.3	0.9	3.3	10.3	0.6	0.5

*Carb: Carbohydrate; ConHC: Condensed hydrocarbon; CRAM: carboxyl rich alicyclic molecules; Unsat HC: Unsaturated hydrocarbon; Unassigned: Formulas did not meet criteria for compound classifications.

Table S5. O/C, H/C and molecular weight (MW) of NOM samples calculated as the number averages of O/C, H/C, and MW of NOM formulas determined by FT-ICR-MS.

NOM ID	Sampling site	Num. Avg. O/C	Num. Avg. H/C	Num. Avg. MW
NOM 1	Everglades, Site F1, FL	0.52	1.05	391
NOM 2	Everglades, Site WCA-2BS, FL	0.52	1.12	369
NOM 3	Williams Lake, MN	0.51	1.26	372
NOM 4	Pacific Ocean near Hawaii, surface water (NELHA)	0.48	1.27	442
NOM 5	Suwannee River, GA	0.50	1.07	375
NOM 6	Everglades, LOX8, FL	0.52	1.12	383

O/C: Oxygen-carbon ratio

H/C: Hydrogen -carbon ratio

Table S6. Chemical composition of moderately hard water (MHW)

Chemical constituent	Concentration (mM)
Sodium bicarbonate (NaHCO ₃)	1.14
Calcium sulfate (CaSO ₄)	0.44
Magnesium sulfate (MgSO ₄)	0.50
Potassium chloride (KCl)	0.05

Table S7. Physicochemical properties of synthesized PVP-PtNPs reported as mean \pm standard deviation of three experimental replicates.

PVP-PtNPs	Concentration	Core size	Hydrodynamic	Zeta potential	% PtNPs	pH	Polydispersit
suspension	of PtNPs stock	measured by	size measured by	(mV) ^b	detectable by	-	y index
	suspension (mg	TEM,	DLS,		sp-ICP-MS		(PDI)
	L-1)	$d_{\text{TEM}} \pm \sigma_d (nm)^a$	$d_{DLS} \pm \sigma_d (nm)^b$		(> 17 nm)		
PtNP ₂₀	28.4 ± 0.5	9.2 ± 1.2	18.9 ± 0.3	-16.9 ± 3.5	0	7.0	0.36
PtNP ₃₀	30.2 ± 0.3	10.9 ± 0.8	31.4 ± 0.8	-19.3 ± 1.9	0	6.9	0.19
PtNP ₅₀	29.7 ± 1.5	18.5 ± 5.0	51.0 ± 0.7	-22.9 ± 1.4	46	7.1	0.20
PtNP ₇₅	32 ± 0.5	44.5 ± 2.7	74.7 ± 0.2	-25.1 ± 3.0	100	6.9	0.03
PtNP ₉₅	28.6 ± 0.6	72.5 ± 3.9	93.4 ± 1.0	-27.2 ± 1.7	100	6.8	0.10

 σ_d is the standard deviation.

^aThe standard deviation is that of the size distribution.

^bThe standard deviation is that of 3 experimental replicates.

Table S8. Number concentration of 1 μ g L⁻¹ PVP-PtNPs (PtNP₂₀-PtNP₉₅) in ultrapure water (UPW) and moderately hard water (MHW) measured by single particle-inductively coupled plasma-mass spectrometer (sp-ICP-MS) and % of measured PtNPs by sp-ICP-MS relative to the theoretical number concentrations calculated from the measured mass concentration and respective NP diameter. All values are reported as the mean ± standard deviation of three experimental replicates.

			in UPW- 0 h			in MHW- 0 h			in MHW- 24 h		
Sample ID	Theoretical number conc. (x10 ⁶ NP mL ⁻¹)	Theoretica l total surface area (x10 ⁹ nm ² mL ⁻¹)	Mean size (nm)	Measured number conc. (x10 ⁶ NP mL ⁻¹)	% measured relative to the theoretical conc.	Mean size (nm)	Measured number conc. (x10 ⁶ NP mL ⁻¹)	% measured relative to the theoretical conc.	Mean size (nm)	Measured number conc. (x10 ⁶ NP mL ⁻¹)	% measured relative to the theoretica l conc.
PtNP ₂₀	114.34	30	26.4±11.6	0.31±0.09	0.3±0.1	31±12	1.77±0.19	1.5±0.2	38±19	9.99±0.07	8.7±0.1
PtNP ₃₀	68.75	26	30.2±12.9	0.83±0.1	1.2±0.1	31±11	1.05±0.05	1.5±0.1	48±15	9.09±0.57	13.2±0.8
PtNP ₅₀	14.06	15	34.3±10.1	4.65±0.43	33.1±3.1	38±10	2.63±0.26	18.7±1.8	54±13	2.61±0.3	18.5±2.1
PtNP ₇₅	1.01	6.3	44.1±7.7	1.09±0.04	108.1±2	59±9	0.50±0.05	49.6±2.2	62±9	0.44±0.04	43.2±3.9
PtNP ₉₅	0.23	3.8	76.7±9.7	0.23±0.03	100.2±6.4	74±9	0.23±0.06	98.0±2.6	74±8	0.18±0.03	75.5±1.6

Table S9. Zeta potential of 1 mg L^{-1} PVP-PtNPs at 0 and 24 hours after mixing with MHW. Zeta potential values are reported as mean \pm standard deviation of three experimental replicates.

PVP-PtNPs	pH of PtNPs	Zeta potential in	Zeta potential in MHW (mV)	
suspension	suspension in	\cup UPW (mV)		
	MHW		0 h	24 h
PtNP ₂₀	8.1	-16.9 ± 3.5	-13.2 ± 0.8	-7.7 ± 0.8
PtNP ₃₀	7.9	-19.3 ± 1.9	-14.7 ± 1.0	-9.4 ± 2.2
PtNP ₅₀	8.0	-22.9 ± 1.4	-16.4 ± 1.1	-13.9 ± 0.6
PtNP ₇₅	8.0	-25.1 ± 3.0	-19.3 ± 0.9	-17.9 ± 4.2
PtNP ₉₅	8.1	-27.2 ± 1.7	-23.3 ± 0.8	-22.9 ± 1.4

Table S10. Mass based concentrations of 1 μ g L⁻¹ PtNPs (PtNP₂₀-PtNP₉₅) in in ultrapure water (UPW) and moderately hard water (MHW) measured by sp-ICP-MS and % of detected PtNP mass by sp-ICP-MS relative to the nominal mass concentration (1 μ g L⁻¹).

	in UPW	V- 0 h	in MHV	V- 0 h	in MHW- 24 h		
Sample ID	Pt conc. % measured (µg L ⁻¹) relative to the nominal conc.		Pt conc. (μg L ⁻¹)	% measured relative to the nominal conc.	Pt conc. (μg L ⁻¹)	% measured relative to the nominal conc.	
PtNP ₂₀	0.017 ± 0.007	1.7 ± 0.7	0.209 ± 0.004	20.9 ± 0.4	0.583 ± 0.016	58.3 ± 1.6	
PtNP ₃₀	0.082 ± 0.007	8.2 ± 0.7	0.426 ± 0.057	42.6 ± 5.7	0.583 ± 0.015	58.3 ± 1.5	
PtNP ₅₀	0.313 ± 0.036	31.3 ± 3.6	0.290 ± 0.048	29.0 ± 4.8	0.046 ± 0.012	4.60 ± 1.2	
PtNP ₇₅	0.851 ± 0.029	85.1 ± 2.9	0.813 ± 0.048	81.3 ± 4.8	0.685 ± 0.049	68.5 ± 4.9	
PtNP ₉₅	0.824 ± 0.028	82.4 ± 2.8	0.706 ± 0.015	70.6 ± 1.5	0.373 ± 0.003	37.3 ± 0.3	

Table S11. Number concentration of 1 μ g L⁻¹ PtNP₂₀ suspended in UPW and in MHW in presence of 1 mg L⁻¹ NOM at 0 and 24 hours post mixing and % of number of detected PtNPs to the theoretically calculated number concentrations. All analyses were performed using sp-ICP-MS. All values are reported as the mean ± standard deviation of three experimental replicates.

Sample ID	Theoretical		at 0 h		after 24 h			
	number conc.	Mean size	Measured number	% measured relative	Mean size	Measured number	% measured relative	
	$(x10^{6} \text{ NP mL}^{-1})^{a}$	(nm)	conc.	to the theoretical	(nm)	conc.	to the theoretical	
			$(x10^6 \text{ NP mL}^{-1})$	conc.		(x10 ⁶ NP mL ⁻¹)	conc.	
in UPW		32 ± 10	0.44 ± 0.03	0.4 ± 0.03	34 ± 14	0.80 ± 0.05	0.7 ± 0.04	
(without NOM)								
in MHW		31 ± 16	0.52 ± 0.03	0.5 ± 0.03	42 ± 10	15.89 ± 5.2	13.9 ± 4.37	
(without NOM)								
NOM 1	114.34	54 ± 24	0.32 ± 0.02	0.3 ± 0.02	53 ± 14	12.73 ± 3.12	11.1 ± 2.62	
NOM 2		42 ± 16	0.48 ± 0.03	0.4 ± 0.03	66 ± 21	22.46 ± 5.41	19.6 ± 4.37	
NOM 3		53 ± 20	0.34 ± 0.02	0.3 ± 0.02	56 ± 14	17.92 ± 4.12	15.7 ± 3.5	
NOM 4		47 ± 21	0.66 ± 0.04	0.6 ± 0.03	74 ± 34	58.89 ± 6.39	51.5 ± 6.12	
NOM 5		46 ± 20	0.55 ± 0.06	0.5 ± 0.05	53 ± 13	19.79 ± 1.65	17.3 ± 1.75	
NOM 6		52 ± 18	0.50 ± 0.05	0.4 ± 0.04	56 ± 14	14.89 ± 0.90	13.0 ± 0.79	

^a Theoretically calculated from the mass concentration and NP diameter

Table S12. Mass concentration of 1 μ g L⁻¹ PtNP₂₀ suspended in UPW and in MHW in presence of 1 mg L⁻¹ NOM at 0 and 24 hours post mixing and % measured PtNP mass relative to the actual concentration (= 1 μ g L⁻¹). All analyses were performed using sp-ICP-MS.

Sample ID	at 0	h	after 24 h		
	Pt conc. measured by	% measured to the	Pt conc. measured by	% measured to the	
	ICP-MS	actual conc.	ICP-MS	actual conc.	
	(µg L ⁻¹)		(µg L ⁻¹)		
in UPW	0.017 ± 0.004	1.7 ± 0.4	0.02 ± 0.007	2.0 ± 0.70	
(without NOM)					
in MHW	0.033 ± 0.003	3.3 ± 0.3	0.308 ± 0.120	30.8 ± 12.0	
(without NOM)					
NOM 1	0.016 ± 0.002	1.6 ± 0.2	0.188 ± 0.090	18.8 ± 9.0	
NOM 2	0.016 ± 0.002	1.6 ± 0.2	0.593 ± 0.176	59.3 ± 17.6	
NOM 3	0.019 ± 0.003	1.9 ± 0.3	0.489 ± 0.209	48.9 ± 20.9	
NOM 4	0.034 ± 0.007	3.4 ± 0.7	0.978 ± 0.078	97.8 ± 7.8	
NOM 5	0.024 ± 0.006	2.4 ± 0.6	0.456 ± 0.142	45.6 ± 14.2	
NOM 6	0.020 ± 0.005	2.0 ± 0.5	0.375 ± 0.100	37.5 ± 10.0	

Table S13. Number based concentrations of 1 μ g L⁻¹ PtNP₉₅ suspended in UPW and in MHW in presence of 1 mg L⁻¹ NOM and % achieved to the theoretically calculated number concentrations, immediately after mixing and after 24 h. All values are reported as the mean \pm standard deviation of three experimental replicates.

Sample ID	Expected	at 0 h			after 24 h		
	number conc. $(x10^6 \text{ NP mL}^{-1})^a$	Mean size (nm)	Actual number conc. (x10 ⁶ NP mL ⁻¹) ^b	% measured to the expected conc.	Mean size (nm)	Actual number conc. (x10 ⁶ NP mL ⁻¹) ^b	% measured to the expected conc.
in UPW		76 ± 10	0.24 ± 0.02	102.2 ± 0.03	72 ± 10	0.19 ± 0.03	82.2 ± 0.06
(without NOM)							
in MHW		72 ± 16	0.25 ± 0.03	105.6 ± 0.05	71 ± 6	0.18 ± 0.02	76.0 ± 0.04
(without NOM)							
NOM 1	0.23	74 ± 14	0.22 ± 0.02	96.3 ± 0.03	74 ± 14	0.23 ± 0.03	98.1 ± 0.05
NOM 2		72 ± 8	0.19 ± 0.03	82.2 ± 0.04	72 ± 10	0.21 ± 0.02	89.8 ± 0.03
NOM 3		73 ± 10	0.17 ± 0.01	75.0 ± 0.03	73 ± 10	0.19 ± 0.02	80.4 ± 0.04
NOM 4		77 ± 11	0.20 ± 0.02	86.4 ± 0.03	77 ± 11	0.21 ± 0.03	89.0 ± 0.04
NOM 5		76 ± 10	0.24 ± 0.03	100.9 ± 0.04	76 ± 10	0.23 ± 0.05	97.8 ± 0.06
NOM 6		72 ± 8	0.18 ± 0.04	78.4 ± 0.06	72 ± 8	0.19 ± 0.03	83.3 ± 0.04

^a Theoretically calculated from the mass concentration and NP diameter

^b measured by sp-ICP-MS

Table S14. Mass based concentrations of 1 μ g L⁻¹ PtNP₉₅ suspended in UPW and in MHW in presence of 1 mg L⁻¹ NOM and % measured to the actual concentration (1 μ g L⁻¹), immediately after mixing and after 24 h. All values are reported as the mean \pm standard deviation of three experimental replicates.

Sample ID	at 0	h	after 24 h		
	Pt conc. measured by	% measured to the	Pt conc. measured by	% measured to the	
	ICP-MS	actual conc.	ICP-MS	actual conc.	
	(µg L ⁻¹)		(µg L ⁻¹)		
in UHPW	1.02 ± 0.03	101.6 ± 3.2	0.88 ± 0.05	88.2 ± 5.1	
(without NOM)					
in MHW	1.03 ± 0.05	103.1 ± 4.8	0.84 ± 0.05	84.4 ± 5.2	
(without NOM)					
NOM 1	0.88 ± 0.06	88.2 ± 5.7	0.90 ± 0.07	90.3 ± 6.7	
NOM 2	0.91 ± 0.04	91.4 ± 4.1	0.96 ± 0.06	95.7 ± 6.1	
NOM 3	0.71 ± 0.04	71.5 ± 4.0	0.84 ± 0.05	83.5 ± 5.0	
NOM 4	0.83 ± 0.08	83.2 ± 7.6	0.92 ± 0.07	92.1 ± 7.1	
NOM 5	1.00 ± 0.06	100.3 ± 5.7	1.01 ± 0.04	100.7 ± 3.9	
NOM 6	0.77 ± 0.05	76.8 ± 5.0	0.86 ± 0.04	85.5 ± 3.8	

Figure S1. (a-e) Representative transmission electron microscopy (TEM) micrographs of synthesized PVP-PtNPs (PtNP₂₀, PtNP₃₀, PtNP₅₀, PtNP₇₅, and PtNP₉₅ respectively) prepared by drop deposition method. The scale bar in the TEM micrograph in panel a is 20 nm and in all the other TEM micrographs is 200 nm (b e).

Figure S2. Aggregation behavior of 1 μ g L⁻¹ (a) NP₂₀, (b) NP₃₀, (c) NP₅₀, (d) NP₇₅, and (e) NP₉₅ in synthetic moderately hard water (MHW) after 24 h.

Figure S3. Correlation between % mass of PtNP₂₀ undergoing aggregation and NOM elemental composition: (a) N, (b) S, (c) O, (d) O/C, and (e) H/C ratio

Reference

1. Aiken, G. R.; McKnight, D. M.; Thorn, K. A.; Thurman, E. M., Isolation of hydrophilic organic acids from water using nonionic macroporous resins. *Organic Geochemistry* **1992**, *18* (4), 567-573.

2. Hutchison, K. J.; Hesterberg, D.; Chou, J. W., Stability of Reduced Organic Sulfur in Humic Acid as Affected by Aeration and pH. *Soil Science Society of America Journal* **2001**, *65* (3), 704-709.

3. Weishaar, J. L.; Aiken, G. R.; Bergamaschi, B. A.; Fram, M. S.; Fujii, R.; Mopper, K., Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. *Environmental Science & Technology* **2003**, *37* (20), 4702-4708.

4. Poulin, B. A.; Gerbig, C. A.; Kim, C. S.; Stegemeier, J. P.; Ryan, J. N.; Aiken, G. R., Effects of Sulfide Concentration and Dissolved Organic Matter Characteristics on the Structure of Nanocolloidal Metacinnabar. *Environmental Science & Technology* **2017**, *51* (22), 13133-13142.