Supplementary Information

Synergetic effects of lanthanide surface adhesion and photon-upconversion for enhanced near-infrared responsive photodegradation of organic contaminants in wastewater

Jiaying Wang^a, Haiying Wang^a, Sijin Zuo^a, Xuming Jin^a, Bingzhu Zheng^b, Renren Deng^{*b},

Weiping Liu^a, and Juan Wang^{*a}

^a Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environment and Resources Science, Zhejiang University, Hangzhou 310058, P. R. China.

^b Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China.

*Corresponding author: E-mail address: <u>wjuan@zju.edu.cn</u>, rdeng@zju.edu.cn.

Experiment Sections:

Synthesis of NaGdF₄:Yb/Tm(49/1mol%)@NaGdF₄ Core-shell (NGFCS) Nanoparticles: In a typical procedure, 4 mL oleic acid was added into a 50-mL two-neck flask containing 2mL water solution of Gd(CH₃CO₂)₃ (0.2 mmol), Yb(CH₃CO₂)₃ (0.196 mmol) and Tm(CH₃CO₂)₃ (0.004 mmol), followed by heating to and maintained at 150 °C with magnetic stirring. After removing water, 6 mL 1-octadecene was added and the mixture was heated at 150 °C for another 60 min before cooling down to 50 °C. Soon afterwards, 5.3 mL methanol solution containing NaOH (1 mmol) and NH₄F (1.32 mmol) was quickly injected to the flask, and the resultant solution was kept at 50 °C for 30 min while stirring. The reaction temperature was then slowly increased to 100 °C. After the methanol was evaporated, the solution was heated to 290 °C under a flow of argon and maintained at that temperature for 90 min. After cooling down to room temperature, the resulting NaGdF₄:49%Yb/1%Tm core nanoparticles were precipitated by centrifugation at 6000 rpm for 5 min, washed with the mixture of cyclohexane/ethanol/methanol several times, and redispersed in 4 mL of cyclohexane for succeeding shell growth.

The synthesis procedure of NaGdF₄:Yb/Tm (49/1mol%)@NaGdF₄ core-shell nanoparticles was identical to the synthesis of NaGdF₄:Yb/Tm core nanoparticles. 4 mL oleic acid and 6 mL 1-octadecene were added into a 50-mL two-neck flask containing 2-mL water solution of Gd(CH₃CO₂)₃ (0.2 mmol), followed by heating at 150 °C for 60 min. After cooling down to 50 °C, NaGdF₄:Yb/Tm core nanoparticles in 4 mL of cyclohexane were added along with a 5.3 mL methanol solution of NaOH (1 mmol) and NH₄F (1.32 mmol). The resulting mixture was stirring at 50 °C for 30 min and increased to 100 °C. Then the solution was heated at 290 °C under an argon flow for 90 min and cooled to room temperature. The resulting nanoparticles were precipitated by centrifugation at 6000 rpm for 5 min, washed with a mixture of cyclohexane/ethanol/methanol several times, and redispersed in 4 mL of cyclohexane.

Synthesis of NaYF₄:Yb/Tm(29/1mol%)@NaYF₄ Core-shell (NYFCS) Nanoparticles: In a typical procedure, 3 mL oleic acid was added into a 50-mL two-neck flask containing 2-mL

water solution of $Y(CH_3CO_2)_3$ (0.28 mmol), $Yb(CH_3CO_2)_3$ (0.116 mmol) and $Tm(CH_3CO_2)_3$ (0.004 mmol), followed by heating to 150 °C with magnetic stirring. After that, 7 mL 1-octadecene was added and the mixture was heated at 150 °C for 60 min before cooling down to 50 °C. Soon afterwards, 6 mL methanol solution containing NH₄F (1.6 mmol) and NaOH (1 mmol) was quickly injected to the reaction flask, and the resultant solution was kept at 50 °C for 30 min with stirring. The reaction temperature was then slowly increased to 100 °C. After the methanol was evaporated, the solution was heated at 290 °C under a flow of argon for 90 min. After cooling down to room temperature, the resulting NaYF₄:29%Yb/1%Tm core nanoparticles were precipitated by centrifugation at 6000 rpm for 5 min, washed with a mixture of cyclohexane/ethanol/methanol several times, and redispersed in 4 mL of cyclohexane.

For core-shell $NaYF_4: Yb/Tm(29/1mol\%)@NaYF_4$ nanoparticles. the prepared NaYF₄:Yb/Tm core nanoparticles were isolated and used as seeds to induce a successive shell coating. 3 mL oleic acid and 7 mL 1-octadecene were added into a 50-mL two-neck flask containing 2-mL water solution of Y(CH₃CO₂)₃ (0.2 mmol), followed by heating at 150 °C for 60 min. After cooling down to 50 °C, NaYF4:Yb/Tm core nanoparticles in 4 mL of cyclohexane were added along with a 6 mL methanol solution of NaOH (1 mmol) and NH₄F (1.6 mmol). The resulting mixture was stirring at 50 °C for 30 min and increased to 100 °C. Then the solution was heated at 290 °C under an argon flow for 90 min and cooled to room temperature. The resulting nanoparticles were precipitated by centrifugation at 6000 rpm for 5 min, washed with a mixture of cyclohexane/ethanol/methanol several times, and redispersed in 4 mL of cyclohexane.

Synthesis of NaGdF₄:Yb/Tm(49/1mol%)@NaYF₄ Core-shell (NGF/NYF) Nanoparticles: In a typical procedure, 4 mL oleic acid was added into a 50-mL two-neck flask containing 2mL water solution of Gd(CH₃CO₂)₃ (0.2 mmol), Yb(CH₃CO₂)₃ (0.196 mmol) and Tm(CH₃CO₂)₃ (0.004 mmol), followed by heating to and maintained at 150 °C with magnetic stirring. After that, 6 mL 1-octadecene was added and the mixture was heated at 150 °C for another 60 min before cooling down to 50 °C. Soon afterwards, 5.3 mL methanol solution containing NaOH (1 mmol) and NH₄F (1.32 mmol) was quickly injected to the flask, and the resultant solution was kept at 50 °C for 30 min while stirring. The reaction temperature was then slowly increased to 100 °C. After the methanol was evaporated, the solution was heated to 290 °C under a flow of argon and maintained at that temperature for 90 min. After cooling down to room temperature, the resulting NaGdF₄:49%Yb/1%Tm core nanoparticles were precipitated by centrifugation at 6000 rpm for 5 min, washed with a mixture of cvclohexane/ethanol/methanol several times, and redispersed in 4 mL of cvclohexane. The assynthesized NaGdF₄:Yb/Tm core nanoparticles were used as seeds to induce a successive shell coating and the synthesis procedure of NaGdF₄:Yb/Tm(49/1mol%)@NaYF₄ core-shell nanoparticles was identical to the synthesis of NYFCS nanoparticles.

Synthesis of NaYF₄:Yb/Tm(29/1mol%)@NaGdF₄ Core-shell (NYF/NGF) Nanoparticles: In a typical procedure, 3 mL oleic acid was added into a 50-mL two-neck flask containing 2mL water solution of Y(CH₃CO₂)₃ (0.28 mmol), Yb(CH₃CO₂)₃ (0.116 mmol) and Tm(CH₃CO₂)₃ (0.004 mmol), followed by heating to 150 °C with magnetic stirring. After that, 7 mL 1-octadecene was added and the mixture was heated at 150 °C for 60 min before cooling down to 50 °C. Soon afterwards, 6 mL methanol solution containing NH₄F (1.6 mmol) and NaOH (1 mmol) was quickly injected to the reaction flask, and the resultant solution was kept at that temperature for 30 min while stirring. The reaction temperature was then slowly increased to 100 °C. After the methanol was evaporated, the solution was heated at 290 °C under a flow of argon for 90 min. After cooling down to room temperature, the resulting NaYF₄:29%Yb/1%Tm core nanoparticles were precipitated by centrifugation at 6000 rpm for 5 min, washed with a mixture of cyclohexane/ethanol/methanol several times, and redispersed in 4 mL of cyclohexane. The as-synthesized NaYF₄:Yb/Tm core nanoparticles were used as seeds to induce a successive shell coating and the synthesis procedure of NaYF₄:Yb/Tm $(29/1mol\%)@NaYF_4$ core-shell nanoparticles was identical to the synthesis of NGFCS nanoparticles.

Fig. S1 Transmittance of light in deionized (DI) water and simulated wastewater. (Inset) photos of simulated wastewater 1-3. Wastewater 1: 0.6 g/L soil + 2 ppm RhB + 2 ppm TC + 2 ppm BPA, wastewater 2: 0.8 g/L soil + 5 ppm RhB + 5 ppm TC + 5 ppm BPA, wastewater 3: 1.5 g/L soil + 5 ppm RhB + 5 ppm TC + 10 ppm BPA.

Fig. S2 TEM images of NaGdF₄:Yb/Tm@NaGdF₄@TiO₂ with different ratios of NGFCS to TiF₄. The molar ratio of NGFCS to TiF₄ is (a) 1:0.2, (b) 1:0.3, (c) 1:0.35, (d) 1:0.4, (e) 1:0.8, (f) 1:1.5.

Fig. S3 Transmission electron microscopy (TEM) images of (a) NaGdF₄:Yb/Tm nanoparticles, (b) NGFCS nanoparticles, (c) NGFCS@TiO₂ nanocomposites, inset: high-resolution TEM of NGFCS@TiO₂ nanocomposites; (d) NaYF₄:Yb/Tm nanoparticles, (e) NYFCS nanoparticles, (f) NYFCS@TiO₂ nanocomposites, inset: high-resolution TEM of NYFCS@TiO₂ nanocomposites; (g) NaYF₄:Yb/Tm nanoparticles, (h) NYF/NGF nanoparticles, (i) NYF/NGF@TiO₂ nanocomposites, inset: high-resolution TEM of NGF/NYF@TiO₂ nanocomposites.

Fig. S4 Size distribution of (a) $NaGdF_4$:Yb/Tm and $NaGdF_4$:Yb/Tm@NaGdF_4 and (b) $NaYF_4$:Yb/Tm and $NaYF_4$:Yb/Tm@NaYF_4 upconversion nanoparticles. EDS spectra of (c) NGFCS and (d) NYFCS upconversion nanoparticles.

Fig. S5 (a) Wide XPS spectra for the NGFCS@TiO₂ nanocomposites, (b)-(g) High-resolution XPS spectra of Na 1s, F 1s, Ti 2p, O1s, Gd 4d, Yb 4d and Tm 4d, respectively.

Fig.S6 (a) Wide XPS spectra for the NYFCS@TiO₂ nanocomposites, (b)-(g) High-resolution XPS spectra of Na 1s, F 1s, Ti 2p, O 1s, Y 3d, Yb 4d and Tm 4d, respectively.

Fig. S7 (a) Wide XPS spectra for the NGF@NYF@TiO₂ nanocomposites, (b)-(g) High-resolution XPS spectra of F 1s, Ti 2p, O 1s, Gd 4d, Y 3d, Yb 4d and Tm 4d, respectively.

Fig. S8 (a) Wide XPS spectra for the NYF@NGF@TiO₂ nanocomposites, (b)-(g) High-resolution XPS spectra of F 1s, Ti 2p, O 1s, Gd 4d, Y 3d, Yb 4d and Tm 4d, respectively.

Fig. S9 N₂ adsorption-desorption isotherms of different samples.

Fig. S10 Energy transfer processes involved in (a) NGFCS@TiO₂ and (b) NYFCS@TiO₂ nanocomposites.

Fig. S11 (a) Upconversion luminescence spectra of (a) NYF/NGF and NYF/NGF@TiO₂ in aqueous solution, (b) NGF/NYF and NGF/NYF@TiO₂ in aqueous solution. UV-vis absorption spectra of (c) NGFCS and NGFCS@TiO₂, (d) NYFCS and NYFCS@TiO₂, (e) NYF/NGF and NYF/NGF@TiO₂ (f) NGF/NYF and NGF/NYF@TiO₂ in aqueous solution.

Fig. S12 Degradation of RhB in aqueous solution (20 ppm) with reaction time, in the absence and presence of NGFCS@TiO₂, NYFCS@TiO₂, NYF/NGF@TiO₂, NGF/NYF@TiO₂ and NGFCS under 980 nm excitation with a power density of 2.5 W/cm², respectively.

Fig.13 The DMPO spin-trapping ESR spectra recorded at ambient temperature in the water solution containing NGFCS@TiO₂ nanocomposites.

Fig. S14. RhB photodegradation efficiency comparison of differnt situations, with BQ trapping agent and purging of N_2 gas respectively, under 980 nm light excitation with (a) NGFCS@TiO₂ and (b) NYFCS@TiO₂ photocatalysts.

Fig. S15 Change of absorption spectra of RhB in aqueous solution (20 ppm) with reaction time, with the addition of (a) NYF/NGF@TiO₂, (b) NGF/NYF@TiO₂ under 980 nm excitation with a power density of 2.5 W/cm², respectively.

Fig. S16 TEM images of (a) NaGdF₄:Yb/Tm nanoparticles, (b) NGF@NYF:30%Gd nanoparticles, (c) NGF@NYF:30%Gd@TiO₂ composites, (d) NaGdF₄:Yb/Tm nanoparticles, (e) NGF@NYF:60%Gd nanoparticles, (f) NGF@NYF:60%Gd@TiO₂ composites. (g) Upconversion luminescence spectra of NGF@NYF:30%Gd and NGF@NYF:60%Gd nanoparticles in aqueous solution. Change of absorption spectra of RhB in aqueous solution (20 ppm) with reaction time, with the addition of (h) NGF@NYF:30%Gd@TiO₂ and (i) NGF@NYF:60%Gd@TiO₂ under 980 nm excitation.

Fig. S17 (a), (b) The respective liquid chromatograms patterns for the intermediate products of TC catalyzed by NGFCS@TiO₂ and NYFCS@TiO₂, after 30 minutes under 980-nm light irradiation. (c) The corresponding ESI mass spectra of the intermediates detected in (a) and (b).

Fig. S18 (a), (b) The respective gas chromatograms patterns for the intermediate products of BPA catalyzed by NGFCS@TiO₂ and NYFCS@TiO₂, after 300 minutes under 980-nm light irradiation. (c) The corresponding ESI mass spectra of the intermediates detected in (a) and (b).

Fig. S19 Absorption spectra of RhB in aqueous solution (20 ppm) with reaction time, with the addition of NGFCS@TiO₂ under (a) 980 nm excitation (48 mW/cm²) and (b) 360 nm excitation (44 mW/cm²). The real wastewater was a barrier between the light source and RhB solution.

Fig. S20 Absorption spectra of RhB aqueous solution in DI water (20 ppm) against reaction time, with the addition of NGFCS@TiO₂ under (a) 980 nm excitation and (b) 360 nm excitation, with a power density of 2.5 W/cm². Absorption spectra of RhB in real wastewater (20 ppm) with reaction time, with the addition of NGFCS@TiO₂ under (c) 980 nm excitation and (d) 360 nm excitation, with a power density of 2.5 W/cm². (e) The photodegradation rates of RhB in the presence of NGFCS@TiO₂ activated by 980 nm and 360 nm light in DI water and real wastewater.

Fig. S21 The reusability of NGFCS@TiO₂ for photocatalytic degradation of RhB under NIR light irradiation.

Fig. S22 RhB photodegradation efficiency with the presence of NGFCS@TiO₂ and pure TiO₂ under simulated sunlight irradiation (100 mW/cm²).

Table S1 Surface porosity of different samples.

Photocatalysts	Surface area	Pore volume	Pore size
	(m^{2}/g)	(m^{3}/g)	(nm)
NaGdF ₄ :Yb/Tm@NaGdF ₄ @TiO ₂	38.9	0.16	19.3
NaYF ₄ :Yb/Tm@NaYF ₄ @TiO ₂	52.3	0.28	20.6
NaYF ₄ :Yb/Tm@NaGdF ₄ @TiO ₂	47.8	0.20	17.9
NaGdF ₄ :Yb/Tm@NaYF ₄ @TiO ₂	54.2	0.19	18.2

Table S2 The degradation rates and pseudo-first-order apparent rate constants (k) of RhB.

Photocatalysts	RhB degradation	First-order rate constant
	efficiency (%)	(min ⁻¹)
NaGdF ₄ :Yb/Tm@NaGdF ₄	17	0.6*10-3
NaGdF ₄ :Yb/Tm@NaGdF ₄ @TiO ₂	97	11.7*10-3
NaYF ₄ :Yb/Tm@NaYF ₄ @TiO ₂	38	1.6*10-3
NaYF ₄ :Yb/Tm@NaGdF ₄ @TiO ₂	68	3.8*10-3
NaGdF ₄ :Yb/Tm@NaYF ₄ @TiO ₂	70	4.0*10-3