Supplementary Data

Bioinspired Succinyl-β-cyclodextrin Membranes for Enhanced Uranium Extraction and Reclamation

Nan Li^a, Li Yang^{b,c}, Xiaoyan Ji^a, Jia Ren^a, Baoyu Gao^a, Weiqiao Deng^{b,c}, Zhining Wang^{a,*}

- a. Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- b. Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
- c. State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Nan Li and Li Yang are co-first authors of the article.

* Corresponding author: Zhining Wang

E-mail: <u>wangzhn@sdu.edu.cn</u>

Fig. S1 Optimized structures of β CD-hydrated metal ions complexes.

Fig. S2 Optimized structures of succinate, 1-(2-carboxyethyl) ester-hydrated metal ions complexes

Fig. S3 SEM of (a) DA-PAN, (b) SβCDM-1, (c) SβCDM-2, (d) SβCDM-5, MAG×10000. (f) cross-section of (e) PAN and (f) SβCDM.

Fig. S4 Marine field study site location at Qingdao on the local map of the Yellow Sea in

China. Image was acquired from Maps of World.

Fig. S5 XPS spectra of S β CDM-1, S β CDM-2 and S β CDM-5.

Fig. S6 FT-IR spectra of SβCDM-1, SβCDM-2 and SβCDM-5.

Fig. S7 Effect of pH on U(VI) uptakes of S β CDM-1, S β CDM-2 and S β CDM-5.

Fig. S8 Zeta potential of SβCDM at different pH.

Fig. S9 (a) Langmuir isotherms, (b) Freundlich isotherms and (c) Temkin isotherms for U(VI) onto SβCDM-1 at 25°C, 35°C and 45°C. (d) Langmuir isotherms, (e) Freundlich isotherms and (f) Temkin isotherms for U(VI) onto SβCDM-2 at 25°C, 35°C and 45°C. (g) Langmuir isotherms, (h) Freundlich isotherms and (i) Temkin isotherms for U(VI) onto SβCDM-5 at 25°C, 35°C and 45°C.

Fig. S10 (a) Pseudo-first-order kinetic model and (b) pseudo-second-order kinetic model fit for the adsorption of U(VI) onto S β CDM.

Fig. S11 Removal efficiency of U(VI) at different times in a dynamic system in deionized water, artificial seawater and natural seawater.

Fig. S12 Average adsorption capacities (ug/g) of Co, Fe, Ni, V, Pb and U for SβCDM during d with natural seawater for 8 days.

Fig. S13 Effect of different anions and their concentrations on removal efficiency of U(VI) in 100 mg/L uranium solution.

Fig. S14 EDS data of S β CDM and S β CDM-R10 adsorbed U(VI).

Fig. S15 U distribution mapping of (a) SβCDM-U, (b) desorbed SβCDM-U, (g) SβCDM-R10 with U and (h) desorbed SβCDM-R10.

Fig. S16 (a) Series connection and (b) parallel connections of hollow fiber S β CDM modules.

Fig. S17 Photos of different membranes.

Fig. S18 (a) The N₂ adsorption/desorption isotherms. Pore size distributions of (b) PAN, (c) DA-PAN and (b)SβCDM.

Table S1. Roughness of $S\beta CDMs$.

membranes	Rq (nm)
SβCDM-1	14.9
SβCDM-2	15.5
SβCDM-5	16.8

	Isotherms	Parameters	Temperatu	re	
			25 °C	35 °C	45 °C
SβCDM	Langmuir	q_{max} (mg/g)	378.8	304.9	270.3
		$K_L(g/mg)$	0.1277	0.1572	0.0919
		R^2	0.9996	0.9995	0.9986
	Freundlich	1/n	0.08986	0.07154	0.1064
		$K_f((mg/g) L/mg^{1/n})$	10.59	10.07	8.735
		R^2	0.9926	0.9929	0.9866
	Temkin	a	224.6	212.0	146.3
		b	23.29	16.11	21.06
		R^2	0.9899	0.9930	0.9625
SβCDM-5	Langmuir	q_{max} (mg/g)	227.3	215.4	182.0
		$K_L(g/mg)$	0.0089	0.0067	0.0068
		R^2	0.9980	0.9958	0.9947
	Freundlich	$K_f((mg/g) L/mg^{1/n})$	2.205	2.049	1.931
		1/n	0.1335	0.1398	0.1423
		R^2	0.9808	0.9842	0.9710
	Temkin	a	98.08	78.92	67.20
		b	28.65	26.27	23.79
		R^2	0.9757	0.9691	0.9517
SβCDM-2	Langmuir	q_{max} (mg/g)	114.3	91.25	88.86
		$K_L(g/mg)$	0.0107	0.0071	0.0060
		R^2	0.9995	0.9965	0.9517
	Freundlich	1/n	0.1351	0.1407	0.1729
		$K_f((mg/g) L/mg^{1/n})$	1.616	1.445	1.331
		R^2	0.9463	0.9898	0.9923
	Temkin	а	47.81	34.45	22.06

Table S2. Adsorption isotherm parameters obtained from the Langmuir, Freundlich and Temkin models in the adsorption of U(VI) onto S β CDMs.

		b	14.22	12.05	13.97
		R^2	0.9804	0.9905	0.9940
SβCDM-1	Langmuir	q_{max} (mg/g)	61.04	41.37	37.94
		$K_L(g/mg)$	0.0071	0.0119	0.0093
		R^2	0.9992	0.9999	0.9989
	Freundlich	$K_f((mg/g) L/mg^{1/n})$	1.153	1.104	1.044
		1/n	0.1583	0.1115	0.1145
		R^2	0.9917	0.9656	0.9952
	Temkin	a	18.41	21.65	18.59
		b	8.591	4.459	4.134
		R^2	0.9952	0.9769	0.9935

Adsorbent	S_{BET} (m ² /g)	V _{tot} (cm ³ /g)	D_p (nm)
PAN	88.094	0.114	5.187
DA-PAN	66.292	0.079	4.748
SβCDM	51.979	0.049	3.804

Table S3. Porous structure parameters of PAN, DA-PAN and $S\beta CDM$

 S_{BET} : BET surface area; V_{tot} : Total pore volume; D_p : Average pore size.

Preparation of artificial seawater

Artificial seawater was prepared according to the Mocledon artificial seawater [1], the constituent parts and their concentration were shown in Table S4.

Constituent parts	Concentration (g/L)
NaCl	26.73
MgCl ₂	2.26
$MgSO_4$	3.25
CaCl ₂	1.15
NaHCO ₃	0.20
KC1	0.72
NaBr	0.0580
H ₃ BO ₃	0.0580
Na ₂ SiO ₃	0.0035
$KAl(SO_4)_2 \cdot 12H_2O$	0.0230
LiNO ₃	0.0013
NH ₄ H ₂ PO ₄	0.0040

Table S4. Constituent parts in Mocledon artificial seawater.

Elements	Concentration (mg/L)
Κ	7.4×10^2
Na	8.2×10^3
Ca	3.4×10^2
Mg	1.0×10^{2}
Fe	6.4×10 ⁻³
Ni	1.8×10 ⁻²
Co	8.4×10 ⁻⁴
V	2.8×10 ⁻³
U	3.5×10 ⁻³

Table S5. Elements in natural seawater.

	shell	CN	R (Å)	σ^2	$\Delta E_0 (eV)$	R-factor
SPCDM II	U-O _{ax}	1.9	1.78	0.002	7.29 (0.021
SPCDWI-U	U-O _{eq}	4.8	2.31	0.011	7.38	0.031

Table S6. EXAFS Parameters of S β CDM-U at k₃-Weighted L₃ Edge.

Metal cation	Aqua complex	Calculated Volum (Å ³)
Li ⁺	$\left[\text{Li}(\text{H}_2\text{O})_4\right]^+$	104.5
Na^+	$[Na(H_2O)_4]^+$	112.1
\mathbf{K}^+	$[K(H_2O)_6]^+$	162.8
Rb^+	$[Rb(H_2O)_6]^{2+}$	168.7
Mg^{2+}	$[Mg(H_2O)_6]^{2+}$	144.2
Ca^{2+}	$[\mathrm{Ca}(\mathrm{OH})(\mathrm{H}_2\mathrm{O})_7]^+$	196.5
Sr^{2+}	$\left[\mathrm{Sr(OH)(H_2O)_7}\right]^+$	204.0
Ba ²⁺	$[Ba(H_2O)_8]^{2+}$	218.7
UO_2^{2+}	$[UO_2 (H_2O)_4]^{2+}$	147.0

Table S7. Calculated Gibbs free energies for complex formation in a water environment.

Aqua complex	$\Delta G^{ m Aqua}$ (Kcal/mol)
$SCE-[Li(H_2O)_4]^+$	-55.33
$SCE-[Na(H_2O)_4]^+$	-55.58
$SCE-[K(H_2O)_6]^+$	-47.35
$SCE-[Rb(H_2O)_6]^{2+}$	-42.37
$SCE-[Mg(H_2O)_6]^{2+}$	-78.56
$SCE-[Ca(OH)(H_2O)_7]^+$	-54.40
$SCE-[Sr(OH)(H_2O)_7]^+$	-60.31
$SCE-[Ba(H_2O)_8]^{2+}$	-75.99
SCE-[UO ₂ (H ₂ O) ₄] ²⁺	-265.00

Table S8. The composition of hydrated metal ions in aqueous solution.

Table S9. Adsorption operation conditions of reported studies on adsorbents for U(VI)in Fig. 11d.

Adsorbents	Operation conditions	
GONRs/CTS	M = 15 mg, pH = 5.0, $C_0 = 50 \text{ mg} \cdot \text{L}^{-1}$, t = 24 h.	
OMS 2 non outing	C[U(VI)/Eu(III)] _{initial} = 20 mg \cdot L ⁻¹ , I = 0.01 M KNO ₃ and T	
OWIS-2 nanowires	= 293 K.	
CS CNT-	$C_0 = 15-100 \text{ mg } L^{-1}$; SD (sorbent dosage) = 0.5 g L^{-1} ; pH	
CS-CN18	4.0; T = 298 K	
CS E-	$T = 298 \text{ K}, C_{U(VI), \text{ initial}} = 30 \text{ mg/L}, \text{ Sorbent dosage (SD)} =$	
05-70	0.4 g/L	
PCTM@PDA@ZIF-8	$20 \text{ mg} \cdot \text{L}^{-1}, \text{[m/V]} = 0.075 \text{ g/L}$	

Reference

[1] H. Yue, C. Ling, T. Yang, X. Chen, Y. Chen, H. Deng, Q. Wu, J. Chen, G.-Q. Chen, A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates, Biotechnology for Biofuels, 7 (2014).