The synergistic photocatalytic effects of surface-modified $g-C_3N_4$ in simple and complex pollution systems based on the macrothermodynamics model

Kexin Li^{a,b}, Dongxiao Zhao^{a,b}, Yawen Li^{a,b}, Shenglian Luo^{a,b,*} and Zhentao Zhou^{a,b}

^aKey Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, NanChang Hangkong University, NanChang 330063, People's Republic of China

^bNational-Local Joint Engineering Research Center of Heavy Metals Polluants Control and Resource utilization, NanChang Hangkong University, NanChang 330063, People's Republic of China

*Corresponding author: E-mail address: sllou@hnu.edu.cn

	- 0	- 5 - 79 -		- (-
Photocatalysts	С	Ν	0	Cl
BCQDs	74.36	0.97	24.67	_
$g-C_3N_4$	54.50	42.13	3.37	_
H^+/g - C_3N_4	57.70	35.62	6.30	0.38
$BCQDs/g-C_3N_4$	52.89	43.40	3.71	_
$H^+/BCQDs/g-C_3N_4$	53.42	41.59	4.63	0.36

Table S1 The atomic concentrations of C, N, O, and Cl elements in the BCQDs, g- C_3N_4 , H^+/g - C_3N_4 , BCQDs/g- C_3N_4 , and $H^+/BCQDs/g$ - C_3N_4 .

	···· / = • (= •/ 8 •) • · 4 ·		
Photocatalysts	First order kinetic plot	$K(\min^{-1})$	R^2
g-C ₃ N ₄	-0.0000t-0.0088	0.0000	0.1381
H^+/g - C_3N_4	-0.0053t+0.2843	0.0053	0.9768
BCQDs/g-C ₃ N ₄	-0.0033t-0.0695	0.0033	0.9923
H ⁺ /BCQDs/g-C ₃ N ₄	-0.1043t+5.9681	0.1043	0.9554

Table S2 The Cr(VI) reduction kinetic parameters of as-prepared $g-C_3N_4$, $H^+/g-C_3N_4$,BCQDs/g-C_3N_4, and $H^+/BCQDs/g-C_3N_4$.

Table S3 The atomic concentrations of C, N, O, and Cl elements in the H⁺/BCQDs/g- C_3N_4 before and after photocatalytic reduction of aqueous Cr(VI).

Photocatalysts	С	Ν	0	Cl
H ⁺ /BCQDs/g-C ₃ N ₄ (before)	53.42	41.59	4.63	0.36
H ⁺ /BCQDs/g-C ₃ N ₄ (after)	40.29	56.12	3.56	0.04

Photocatalysts	First order kinetic plot	$K(\min^{-1})$	R^2
g-C ₃ N ₄	-0.0116t+0.6501	0.0116	0.9877
H^+/g - C_3N_4	-0.0512t+3.2674	0.0512	0.9156
BCQDs/g-C ₃ N ₄	-0.0072t+0.4099	0.0072	0.9473
$H^+/BCQDs/g-C_3N_4$	-0.0145t+0.7816	0.0145	0.9913

Table S4 The 4-FP degradation kinetic parameters of as-prepared $g-C_3N_4$, $H^+/g-C_3N_4$,BCQDs/g-C_3N_4, and $H^+/BCQDs/g-C_3N_4$.

Fig. S1 High-resolution (a, b, and c) and full-range (d) XPS of as-prepared BCQDs in the C 1*s*, N 1*s*, and O 1*s* binding energy regions.

Fig. S2 PL spectrum and corresponding fluorescence image of as-prepared BCQDs aqueous precursor.

Fig. S3 The photocatalytic activity comparison of $H^+/BCQDs/g-C_3N_4$ and HNO_3 treated $H^+/BCQDs/g-C_3N_4$ toward aqueous Cr(VI) reduction.

Fig. S4 Influence of BCQDs aqueous precursor concentrations on the photocatalytic activities of $H^+/BCQDs/g-C_3N_4$ toward aqueous Cr(VI) reduction.

Fig. S5 The photocatalytic activity comparison of BCQDs/g-C₃N₄, H⁺/BCQDs/g-C₃N₄, and (H⁺/BCQDs)/g-C₃N₄ toward aqueous Cr(VI) reduction.

Fig. S6 Full-range XPS of H⁺/BCQDs/g-C₃N₄ in the C 1*s*, N 1*s*, O 1*s*, and Cl 2*p* binding energy regions before and after photocatalytic reduction of aqueous Cr(VI).

Fig. S7 Photocatalytic degradation of aqueous 4-FP by using HCl or HNO₃ treated g- C_3N_4 .

Fig. S8 The photocatalytic activity comparison of $H+/BCQDs/g-C_3N_4$ and $BCQDs/g-C_3N_4$ (aq HCl) toward aqueous Cr(VI) reduction (a) and 4-FP degradation (b).