Supporting Information

Platform Selection of Engineered Nanomaterials for Water Decontamination Applications

Alina Borovik¹, Vasiliki Karanikola², Ines zucker^{1,3*}

¹Porter School of Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

²Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA

³School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

*Corresponding author: Address: Tel Aviv University, Tel Aviv 69978, Israel; Tel: +972-73-

3804581; email: ineszucker@tauex.tau.ac.il

Search terms for Figure 1:

NM:

(TITLE-ABS-KEY (nanomaterial OR nano AND material OR nanoparticle OR nano AND particle) AND TITLE-ABS-KEY (water AND remediation OR decontamination OR water AND treatment OR water OR decontamination))

NM@S:

(TITLE-ABS-KEY(nanomaterial OR nano material OR nanoparticle OR nano particle) AND TITLE-ABS-KEY(Water Remediation OR decontamination OR water treatment OR water OR decontamination)AND TITLE-ABS-KEY(embedded OR infused OR incorporated OR affixed OR impregnated OR immobilized OR modified OR functionalized)) **Table S1.** Literature used for evaluation of the efficiency criterion for selected supports for metal oxide nanoadsorbents. The table summarizes the calculations and assumptions taken into account when adsorption performance of the supported nanomaterial (NM@S) was normalized to the performance of the nanomaterial in suspended form (NM).

Article	Platform group	Nanoadsorbent	Adsorbate	Nanoadsorbent	Nanoadsorbent performance on	NM@S/NM	Assumptions
				performance (NIVI)	substrate (NM@S)	0.000	
O. Inirunavukkarasu, Arsenic	Natural media	α-геоон	AS (III)	23 mg/g FeOOH -	41.1ug/gNM@S/45mgFe/gNM@	0.026	Iron oxide content 45
removal from drinking water using	Bead - Sand				5*65Fe/100FeO(OH)=0.59mgAs/g		mg/g (4.5%)
Iron oxide-coated sand, 2003,					FeOOH	0.700	pH 7.6
Water, Air, and Soil Pollution			As(V)	1.14 mg/g FeOOH ³	42.6ug/gNM@S/45mgFe/gNM@	0.539	phase: combination of
					S*65Fe/100FeO(OH)=0.615mgAs/		goethite and nematite
						0.420	
S.Lee, Iron oxide nano-particles-	Natural media	Iron oxide	Cd(II)	7.4 mg/g Iron oxide 5	0.5282/5./*0.65*1000=60.23	8.139	pH 4 and not 5 as in
immobilized-sand material in the	Bead - Sand				mg/g Iron oxide		the NM@S paper
treatment of Cu(II), Cd(II) and							
Pb(II) contaminated waste waters,			Pb(II)	22.83 mg/g Iron oxide	2.0877/5.7*0.65*1000=238.07	10.43	
2012, Chemical Engineering				5	mg/g Iron oxide		
Journal ⁴							
S. Kundu, Adsorptive removal of	Natural media -	Fe ₃ O ₄	As(III)	2.63 mg/g Fe ₃ O ₄ ³	0.69*0.2353=0.16 mg/g Fe ₃ O ₄	0.061	
As(III) from aqueous solution using	Cement						
iron oxide coated cement (IOCC):							
Evaluation of kinetic, equilibrium		Fo 0		2.62 mg/g Eq. 0.3	2 86*0 025*221/55 8-0.4 mg/g	0.152	
and thermodynamic models		re ₃ O ₄	AS(V)	2.05 mg/g Fe ₃ O ₄	5.80° 0.025° 251/55.8–0.4 mg/g	0.152	
Sanghamitra, 2006, Separation and					Fe304		
Purification Technology ⁶							
A. Yurum, Fast deposition of	Granular activated	α-Fe ₂ O ₃	As(V)	0.827 mg/g Fe ₂ O ₃ ⁸	136.37 mg/g Fe ₂ O ₃	164.897	Took the oxidized
porous iron oxide on activated	carbon						activated carbon.
carbon by microwave heating and							WT%(Fe)=20.37%
arsenic (V) removal from water,							Assumption: Same pH
2014, Chemical Engineering							range (pH=6.27 for
Journal ⁷							N _{ads} -S, pH=7 for N _{ads})
A.M. Cooper, The effect of carbon	Granular activated	δ -FeOOH	As(V)	7 mg/g δ-FeOOH ¹⁰	45.1 mg/g FeOOH	6.443	Assumption:
type on arsenic and	carbon						The same N _{ads} phase
trichloroethylene removal							in both articles
capabilities of iron (hydr)oxide							The same condition
nanoparticle-impregnated							used to measure the
granulated activated carbons,							adsorption capacity.
2010, Journal of Hazardous							
Materials ⁹							

K. Hristovski, Effect of synthesis conditions on nano-iron (hydr)oxide impregnated granulated activated carbon, 2009, Chemical Engineering Journal ¹¹	Granular activated carbon	Amorphous FeOOH	As(V)	7 mg/g Amorphous FeOOH ¹²	21.7 mg/g Amorphous FeOOH	3.100	Assumption: Adsorption capacity: the average amount of adsorption capacity (15.2-28.2 mg/g amorphous FeOOH)
M. Jain, Development of iron oxide/activated carbon	Activated carbon	Fe ₃ O ₄ magnetite	Cr(IV)	5.5 mg/g Fe ₃ O ₄	8.06/0.184*0.72 =31.54 mg/g Fe ₃ O ₄	5.727	Phase: magnetite
nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II)			Cu(II)	2.7 mg/g Fe ₃ O ₄	3.2/0.184*0.72=12.52 mg/g Fe ₃ O ₄	4.637	
Water Resources and Industry ¹³			Cd(II)	0.09 mg/g Fe ₃ O ₄	2.15/0.184*0.72=8.41 mg/g Fe ₃ O ₄	93.444	
D.Mohan, Cadmium and lead remediation using magnetic oak	Carbon biochar	Fe ₃ O ₄ magnetite	Cd(II)	0.09 mg/g Fe ₃ O ₄ ¹³	7.4/0.513*0.72=10.39 mg/g Fe ₃ O ₄	115.444	pH=5
wood and oak bark fast pyrolysis bio-chars,2014, Chemical			Cd(II)	0.09 mg/g Fe ₃ O ₄ ¹³	2.87/0.806*0.72=2.56 mg/g Fe ₃ O ₄	28.444	
Engineering Journal ¹⁴			Pb(II)	22.89 mg/g Fe ₃ O ₄ ¹⁵	30.2/0.513*0.72=42.39 mg/g Fe ₃ O ₄	1.852	
			Pb(II)	0.1105mmol/g*207.2= 22.89 mg/g Fe ₃ O ₄ ¹⁵	10.13/0.806*0.72=9.05 mg/g Fe ₃ O ₄	0.395	
S.M, Miller, Novel, bio-based, photoactive arsenic sorbent: TiO ₂ - impregnated chitosan bead, 2010, Water Research P.A. Nishad, Enhancing the	Chitosan beads	TiO ₂	As(III)	3 mg/g TIO ₂	2.099/0.298 =7.04 mg/g TiO ₂	2.347	Data for NM is taken from fig. 4 in article, so we assume the experiment conditions are the same as for the NM@S. In article mentioned that TiO ₂ mass is 29.8%. Assumption: pH is similar (pH-3.3 for N _{ads} and pH=4.3 for NM@S). Same NM used. ¹⁷ The ration between N _{ads} to S is given (1:5)
nano titania -chitosan beads using epichlorohydrin as the crosslinker, 2017, Journal of Hazardous Materials ¹⁶			As (V)	5.5 mg/g TIO ₂	2.050/0.298 = 6.88 mg/g TiO ₂	1.251	
P.A. Nishad, Nano-titania- crosslinked chitosan composite as a superior sorbent for antimony	Chitosan beads	TiO ₂	Sb(III)	173.2 μmol/g TiO ₂	170.3 6 = 1021.8 μmol/g	5.9	pH=6.9 NM to S ration is 1:5
(III) and (V), 2014, Carbohydrate			Sv(III)	187.7 μmol/g TiO ₂	1089 μmol/g TiO ₂	5.802	pH=3.06

Polymers ¹⁷			Sb(V)	799.1 μmol/g TiO ₂	1215 μmol/g TiO ₂	1.519	pH=3.33
J. Yamani, Enhanced arsenic removal using mixed metal oxide impregnated chitosan beads, 2012, Water Research ¹⁸	Chitosan beads	Al ₂ O ₃	As(V)	12 mg/g Al ₂ O ₃	8.4 mg/g Al ₂ O ₃	0.7	
A. I. Zouboulis, Arsenic Removal Using Iron Oxide Loaded Alginate Beads, 2002, Industrial and Engineering Chemistry Research ¹⁹	Alginate beads	Hydrous FeO(OH)	As(V)	9 mg As / g-Fe ²⁰	5.79 mg As / g-Fe	0.643	Assumption: Same N _{ads} phase and experiment conditions.
J. Min, Removal of Selenite and Chromate Using Iron(III)-Doped Alginate Gels, 1999, Water Environment Research ²¹	Alginate gel beads	Iron oxyhydroxide Fe(OH)₃	Se(IV)	2.4 mg / g-Fe ²²	0.15 g Se(IV) / g-Fe	0.062	
W. Biftu, Synthesis of nanoZrO ₂ via simple new green routes and its effective application as adsorbent in phosphate remediation of water with or without immobilization in Al-alginate beads,2020, Water Science & Technology ²³	Al-alginate beads	nZrO ₂	PO4 ³⁻	126.2 mg/g - nZrO ₂	173.0 mg/g nZrO ₂ -Al-alginate = 24.22 mg/g nZrO ₂	0.192	1.5 g of nano ZrO2 was added => 1.5/173= 86 => 86% Al-alginate beads and 14% NM
R. Pineda, Removal of Arsenic from Aqueous Solutions with Alginate Based-Magnetic Nanocomposites, 2009, Clean Technology ²⁴	Alginate	Magnetite (Fe ₃ O ₄)	As(V)	11-17 mg/g Fe ₃ O ₄ ^{25,26}	1.1 mg/g	0.418	Assumption: Same N _{ads} phase and experiment conditions. For NM@S/NM calculation we took the NM average
			As(III)	20-22 mg/g Fe ₃ O ₄ ^{25,26}	1.04 mg/g	0.495	Assumption: Same N _{ads} phase and experiment conditions. For NM@S/NM calculation we took the NM average
J. Elton, Titanium Dioxide-Based Hybrid Ion-Exchange Media for Simultaneous Removal of Arsenic and Nitrate, 2013, Novel Solutions to Water Pollution ²⁷	Ion-Exchange beads	TiO ₂	As	7 mg/g TiO ₂ ²⁸	— 9.95 mg/g TiO ₂	1.421	MW(Ti)=47.8 g/mol MW(TiO ₂)=79.8 g/mol Assumption: Same N _{ads} phase and experiment conditions.

					— 14.92 mg/g TiO ₂	2.131	MW(Ti)=47.8 g/mol MW(TiO ₂)=79.8 g/mol Assumption: Same N _{ads} phase and experiment conditions.
					— 16.36 mg/g TiO ₂	2.336	MW(Ti)=47.8 g/mol MW(TiO ₂)=79.8 g/mol Assumption: Same N _{ads} phase and experiment conditions.
M. Gifford, Ranking traditional and nano-enabled sorbents for simultaneous removal of arsenic and chromium from simulated groundwater, 2017, Science of the Total Environment ²⁹	Ion-Exchange beads	TiO ₂	As	107.5 μmol/g TiO ₂	12.4/0.16	0.721	From J. Elton et al. assuming mass of synthesized TiO ₂ @S is 11-21% (16% avg) ²⁷ .
			Cr	5.7 μmol/g Fe(OH)2	 Fe(OH) ₂	8.246	From K. Hristovski el al. assuming that mass of amorphous iron (hydro)oxide synthesized is 16% of Fe ³⁰ . Mw(Fe) = 55.8 g/mol Mw(Fe(OH) ₂) = 89.8 g/mol
		amorphous Fe(OH) ₂	As	172.1 μmol/g Fe(OH) ₂	— — Fe(OH)2	0.341	From J. Elton et al. assuming mass of synthesized TiO ₂ @S is 11-21% (16% avg) ²⁷ . From K. Hristovski el al. assuming that mass of amorphous iron (hydro)oxide synthesized is 16% of Fe ³⁰ . Mw(Fe) = 55.8 g/mol Mw(Fe(OH) ₂) = 89.8 g/mol From K. Hristovski el al. assuming that mass

							of amorphous iron (hydro)oxide synthesized is 16% of Fe ³⁰ . Mw(Fe) = 55.8 g/mol Mw(Fe(OH) ₂) = 89.8 g/mol
J. Wang, Hydrous ferric oxide-	Ion-Exchange beads	Amorphous	As(III)	28.0 mg/g Fe(OH) ₂ ¹⁶	225*0.65=146.25 mg/g Fe(OH) ₂	4.223	
resin nanocomposites of tunable		Fe(OH)₂			200*0.65=130 mg/g Fe(OH) ₂	4.643	
structure for arsenite removal:					190*0.65=123.5 mg/g Fe(OH) ₂	4.411	
Effect of the nost pore structure,					200*0.65=130 mg/g Fe(OH) ₂	4.643	
Materials ³¹					175*0.65=113.75 mg/g Fe(OH) ₂	4.063	
Q. Su, Fabrication of polymer- supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters, 2009, Science of the Total Environment ³²	Ion-Exchange beads	Mn(OH) ₂	Pb(II)	352.55 mg/g Mn(OH) ₂	395 mg/g /(7.33%Mn*55/89Mn in MN(OH)2)= 3381.85 mg/g Mn(OH) ₂	9.592	
L. Zhang, Removal of phosphate from water by activated carbon fiber loaded with lanthanum oxide, 2011, Journal of Hazardous Materials ³³	Carbon fibers	LaO	PO4 ³⁻	46.95 mg/g LaO ³⁴	5.85/0.1178 = 49.66 mg/g LaO	1.058	WT%(LaO)=11.78% Assumption: Same LaO phase and experiment condition
J. Zhang, Synthesis of magnetic iron oxide nanoparticles onto fluorinated carbon fabrics for contaminant removal and oil- water separation, 2017, Separation and Purification Technology ³⁵	Carbon fibers	Fe ₃ O ₄	Cu(II)	8.9 mg/g Fe ₃ O ₄ ³⁶	62.5 mg/g Fe ₃ O ₄	7.022	pH=5
Q. Zhou, Phosphorus removal from wastewater using nano- particulates of hydrated ferric oxide doped activated carbon fiber prepared by Sol–Gel method, 2012, Chemical Engineering Journal journal ³⁷	Carbon fibers	FeOOH	P	139.5 mg/g FeOOH ³⁸	12.86/0.44=29.227 mg/g FeOOH	0.21	From fig2 WT% (FeOOH)=44 12.86 mg/g-NM@S 12.86/0.44 = 29.227 mg/g FeOOH pH range of 2.0–6.0 assume: amorphous phase, FeOOH adsorption capacity:

							134-145 mg/g ³⁸ , we
							took the average
Y. Zheng, Adsorptive removal of arsenic from aqueous solution by a PVDF/zirconia blend flat sheet membrane, 2011, Journal of Membrane Science ³⁹	Carbon fibers	Zr(OH)4	As	38.9 mg/g Zr(OH) ₄	43 mg/g mg/g Zr(OH)₄	1.105	
K.E. Greenstein, Performance	Polymeric fibers	α-Fe ₂ O ₃	As(V)	17 mg/g α -Fe ₂ O ₃	9.3 mg/g α-Fe ₂ O ₃	0.547	
comparison of hematite (P-Fe ₂ O ₃)-			Cu(II)	70 mg/g α-Fe ₂ O ₃	$35 \text{ mg/g} \alpha$ -Fe ₂ O ₃	0.5	
polymer composite and core-shell			Cr(VI)	9.5 mg/g α-Fe ₂ O ₃	7.3 mg/g α -Fe ₂ O ₃	0.768	
nanofibers as point-of-use filtration platforms for metal sequestration, 2019, Water Research ⁴⁰			Pb(II)	94 mg/g α-Fe ₂ O ₃	57 mg/g α-Fe ₂ O ₃	0.606	
K.T. Peter, Functionalized polymer-	Polymeric fibers	Ferrihydrite iron	Cr	19 mg-Cr/g-Fh	17 mg-Cr/g-Fh	0.89	
iron oxide hybrid nanofibers: Electrospun filtration devices for metal oxyanion removal, 2017, Water Research ⁴¹	(polyacrylonitrile, PAN)	oxide	As	31 mg-As/g-Fh	26 mg-As/g-Fh	0.84	
K.T. Peter , Surfactant-assisted	Polymeric fibers	Amorphous Fe ₂ O ₃	Pb	13 mg-Pb/g-Fe ₂ O ₃	27 mg-Pb/g-Fe ₂ O ₃	2.08	
fabrication of porous polymeric	(PAN)		Cu	75 mg-Cu/g-Fe ₂ O ₃	25 mg-Cu/g-Fe ₂ O ₃	0.33	
nanofibers with surface-enriched			Cd	105 mg-Cd/g-Fe ₂ O ₃	100 mg-Cd/g-Fe ₂ O ₃	0.95	
iron oxide nanoparticles:	Polymeric fibers	Amorphous Fe ₂ O ₃	Pb	13 mg-Pb/g-Fe ₂ O ₃	101 mg-Pb/g-Fe ₂ O ₃	7.77	
removal of motal cations 2018	(PAN-based)		Cu	75 mg-Cu/g-Fe ₂ O ₃	170 mg-Cu/g-Fe ₂ O ₃	2.27	
Environmental Science ⁴²			Cd	105 mg-Cd/g-Fe ₂ O ₃	57 mg-Cd/g-Fe ₂ O ₃	0.54	
X.Zhang, Preparation, performance and adsorption activity of TiO ₂ nanoparticles entrapped PVDF hybrid membranes, 2012, Applied Surface Science ⁴³	PVDF membrane	TiO ₂	Cu(II)	6.86 mg/g TiO ₂ ⁴⁴	86 ug/cm ² / (1.087*1.78)g/cm ³ density of pVDF and added weiget by TiO2 / 0.1 cm thick mem / 8.76% TIO2 = 0.5 mg/g TiO2	0.073	8.74% loaded TiO ₂ 20mm×20mm membrane area (4cm ²) pH>7 (for pH>7 adsorption is the same) Lagergren model
B. Gohari, Polyethersulfone Membranes Prepared with 3-Aminopropyltriethoxysilane Modified Alumina Nanoparticles for Cu(II) Removal from Water, 2018, ACS OMEGA ⁴⁵	PES membrane	γ-alumina	Cu(II)	51.3 mg/g	$\frac{44.84\frac{mg}{g}}{0.05} = 896.8 \text{ mg/g}$	17.48	5% alumina
X. Zhang, Preparation, performances of PVDF/ZnO hybrid	PVDF membrane	hexagonal ZnO	Cu(II)	54.3 mg/g ⁴⁷	87.5 ug/cm ² / (1.05*1.78)g/cm ³ density of pVDF and added	0.172	

membranes and their applications					weiget by ZnO / 0.1 cm thick		
in the removal of copper ions,					mem / 5% ZnO = 9.35 mg/g ZnO		
2014, Applied Surface Science ⁴⁶							
L. Chen, In situ formation of	PVDF membrane	La(OH) ₃	PO ₄	61.7 mg /g-La	256.6 mg/g-La	4.159	
La(OH)3-poly(vinylidene fluoride)							
composite filtration membrane							
with superior phosphate removal							
properties, 2018, Chemical							
Engineering Journal 48							

REFERENCES

- 1. Thirunavukkarasu, O. S., Viraraghavan, T. & Subramanian, K. S. Arsenic removal from drinking water using iron oxide-coated sand. *Water. Air. Soil Pollut.* **142**, 95–111 (2003).
- 2. Wilkie, J. A. & Hering, J. G. Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. *Colloids Surfaces A Physicochem. Eng. Asp.* **107**, 97–110 (1996).
- 3. Mamindy-Pajany, Y., Hurel, C., Marmier, N. & Roméo, M. Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility. *Desalination* **281**, 93–99 (2011).
- 4. Lee, S. M., Laldawngliana, C. & Tiwari, D. Iron oxide nano-particles-immobilized-sand material in the treatment of Cu(II), Cd(II) and Pb(II) contaminated waste waters. *Chem. Eng. J.* **195–196**, 103–111 (2012).
- 5. Zhang, C. *et al.* Phase transformation of crystalline iron oxides and their adsorption abilities for Pb and Cd. *Chem. Eng. J.* **284**, 247–259 (2016).
- Kundu, S. & Gupta, A. K. Adsorptive removal of As(III) from aqueous solution using iron oxide coated cement (IOCC): Evaluation of kinetic, equilibrium and thermodynamic models. Sep. Purif. Technol. 51, 165–172 (2006).
- 7. Yürüm, A. *et al.* Fast deposition of porous iron oxide on activated carbon by microwave heating and arsenic (V) removal from water. *Chem. Eng. J.* **242**, 321–332 (2014).
- 8. Giménez, J., Martínez, M., de Pablo, J., Rovira, M. & Duro, L. Arsenic sorption onto natural hematite, magnetite, and goethite. *J. Hazard. Mater.* **141**, 575–580 (2007).
- 9. Anne Marie Cooper, Kiril D. Hristovski, Teresia Möller, Paul Westerhoff, P. S. The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons. *J. Hazard. Mater.* **183**, 381–388 (2010).
- 10. Faria, M. C. S. *et al.* Arsenic removal from contaminated water by ultrafine δ-FeOOH adsorbents. *Chem. Eng. J.* **237**, 47–54 (2014).
- 11. Hristovski, K. D., Westerhoff, P. K., Möller, T. & Sylvester, P. Effect of synthesis conditions on nano-iron (hydr)oxide impregnated granulated activated carbon. *Chem. Eng. J.* **146**, 237–243 (2009).
- 12. Lenoble, V., Bouras, O., Deluchat, V., Serpaud, B. & Bollinger, J. C. Arsenic adsorption onto pillared clays and iron oxides. *J. Colloid Interface Sci.* **255**, 52–58 (2002).
- 13. Jain, M. *et al.* Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution. *Water Resour. Ind.* **20**, 54–74 (2018).
- 14. Mohan, D., Kumar, H., Sarswat, A., Alexandre-Franco, M. & Pittman, C. U. Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. *Chem. Eng. J.* **236**, 513–528 (2014).
- 15. Wang, X. S., Lu, H. J., Zhu, L., Liu, F. & Ren, J. J. Adsorption of lead(II) ions onto magnetite nanoparticles. *Adsorpt. Sci. Technol.* **28**, 407–417 (2010).

- 16. Miller, S. M. & Zimmerman, J. B. Novel, bio-based, photoactive arsenic sorbent: TiO2impregnated chitosan bead. *Water Res.* **44**, 5722–5729 (2010).
- Nishad, P. A., Bhaskarapillai, A. & Velmurugan, S. Nano-titania-crosslinked chitosan composite as a superior sorbent for antimony (III) and (V). *Carbohydr. Polym.* **108**, 169– 175 (2014).
- 18. Yamani, J. S., Miller, S. M., Spaulding, M. L. & Zimmerman, J. B. Enhanced arsenic removal using mixed metal oxide impregnated chitosan beads. *Water Res.* **46**, 4427–4434 (2012).
- 19. Zouboulis, A. I. & Katsoyiannis, I. A. Arsenic removal using iron oxide loaded alginate beads. *Ind. Eng. Chem. Res.* **41**, 6149–6155 (2002).
- Jennifer A. Wilkie, J. G. H. *et al.* Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. *Colloids and Surfaces* **107**, 97–110 (1996).
- 21. Min, J. H. & Hering, J. G. Removal of Selenite and Chromate Using Iron(III)-Doped Alginate Gels. *Water Environ. Res.* **71**, 169–175 (1999).
- 22. Gonzalez, C. M. *et al.* Sorption kinetic study of selenite and selenate onto a high and low pressure aged iron oxide nanomaterial. *J. Hazard. Mater.* **211–212**, 138–145 (2012).
- 23. Biftu, W. K. & Ravindhranath, K. Synthesis of nanoZrO2via simple new green routes and its effective application as adsorbent in phosphate remediation of water with or without immobilization in Al-alginate beads. *Water Sci. Technol.* **81**, 2617–2633 (2020).
- 24. Pineda, T., L., Rivera, M., O., Pérez, O., P., & Velázquez, F., R. Removal of Arsenic from Aqueous Solutions with Alginate Based-Magnetic Nanocomposites. *Clean Technol.* **2**, 261–264 (2009).
- He, K. O., Agai, Y. T., Akamura, S. N., Shima, T. O. & Aba, Y. B. Adsorption Behavior of Arsenic (III) and Arsenic (V) Using Magnetite. *J. Chem. Eng. Japan* 38, 671–676 (2005).
- 26. Yean, S. & Cong, L. Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. *Mater. Res. Soc.* 3255–3264 (2005) doi:10.1557/JMR.2005.0403.
- 27. Elton, J., Hristovski, K. & Westerhoff, P. Titanium dioxide-based hybrid ion-exchange media for simultaneous removal of arsenic and nitrate. *ACS Symp. Ser.* **1123**, 223–236 (2013).
- 28. Hristovski, K., Baumgardner, A. & Westerhoff, P. Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: From nanopowders to aggregated nanoparticle media. *J. Hazard. Mater.* **147**, 265–274 (2007).
- 29. Gifford, M., Hristovski, K. & Westerhoff, P. Ranking traditional and nano-enabled sorbents for simultaneous removal of arsenic and chromium from simulated groundwater. *Sci. Total Environ.* **601–602**, 1008–1014 (2017).
- 30. Hristovski, K. *et al.* Simultaneous removal of perchlorate and arsenate by ion-exchange media modified with nanostructured iron (hydr)oxide. *J. Hazard. Mater.* **152**, 397–406 (2008).
- 31. Wang, J., Zhang, S., Pan, B., Zhang, W. & Lv, L. Hydrous ferric oxide-resin

nanocomposites of tunable structure for arsenite removal: Effect of the host pore structure. *J. Hazard. Mater.* **198**, 241–246 (2011).

- 32. Su, Q. *et al.* Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters. *Sci. Total Environ.* **407**, 5471–5477 (2009).
- 33. Zhang, L. *et al.* Removal of phosphate from water by activated carbon fiber loaded with lanthanum oxide. *J. Hazard. Mater. J.* **190**, 848–855 (2011).
- Xie, J., Lin, Y., Li, C., Wu, D. & Kong, H. Removal and recovery of phosphate from water by activated aluminum oxide and lanthanum oxide. *Powder Technol.* 269, 351–357 (2015).
- 35. Zhang, J. *et al.* Synthesis of magnetic iron oxide nanoparticles onto fluorinated carbon fabrics for contaminant removal and oil-water separation. *Sep. Purif. Technol.* **174**, 312–319 (2017).
- 36. Wang, X. S., Zhu, L. & Lu, H. J. Surface chemical properties and adsorption of Cu (II) on nanoscale magnetite in aqueous solutions. *Desalination* **276**, 154–160 (2011).
- Zhou, Q., Wang, X., Liu, J. & Zhang, L. Phosphorus removal from wastewater using nano-particulates of hydrated ferric oxide doped activated carbon fiber prepared by Sol – Gel method. *Chem. Eng. J. J.* 202–202, 619–626 (2012).
- Newcombe, R. L., Strawn, D. G., Grant, T. M., Childers, S. E. & Möller, G. Phosphorus Removal from Municipal Wastewater by Hydrous Ferric Oxide Reactive Filtration and Coupled Chemically Enhanced Secondary Treatment: Part II-Mechanism. *Water Environ. Res.* 80, 248–256 (2008).
- 39. Zheng, Y. M., Zou, S. W., Nanayakkara, K. G. N., Matsuura, T. & Chen, J. P. Adsorptive removal of arsenic from aqueous solution by a PVDF/zirconia blend flat sheet membrane. *J. Memb. Sci.* **374**, 1–11 (2011).
- 40. Greenstein, K. E., Myung, N. V., Parkin, G. F. & Cwiertny, D. M. Performance comparison of hematite (A-Fe2O3)-polymer composite and core-shell nanofibers as point-of-use filtration platforms for metal sequestration. *Water Res.* **148**, 492–503 (2019).
- 41. Peter, K. T., Johns, A. J., Myung, N. V. & Cwiertny, D. M. Functionalized polymer-iron oxide hybrid nanofibers: Electrospun filtration devices for metal oxyanion removal. *Water Res.* **117**, 207–217 (2017).
- 42. Peter, Katherine T.; Myung, Nosang V.; Cwiertny, D. M. Surfactant-assisted fabrication of porous polymeric nanofibers with surface-enriched iron oxide nanoparticles: composite filtration materials for removal of metal cations. *Environ. Sci. Nano* **5**, 669–681 (2018).
- 43. Zhang, X. *et al.* Preparation, performance and adsorption activity of TiO 2 nanoparticles entrapped PVDF hybrid membranes. *Appl. Surf. Sci.* **263**, 660–665 (2012).
- 44. Liang, P., Qin, Y., Hu, B., Peng, T. & Jiang, Z. Nanometer-size titanium dioxide microcolumn on-line preconcentration of trace metals and their determination by inductively coupled plasma atomic emission spectrometry in water. *Anal. Chim. Acta* **440**, 207–213 (2001).
- 45. Gohari, B. & Abu-zahra, N. Polyethersulfone Membranes Prepared with 3 -Aminopropyltriethoxysilane Modi fi ed Alumina Nanoparticles for Cu (II) Removal from

Water. ACS OMEGA 3, 10154-10162 (2018).

- 46. Zhang, X. *et al.* Preparation, performances of PVDF/ZnO hybrid membranes and their applications in the removal of copper ions. *Appl. Surf. Sci.* **316**, 333–340 (2014).
- 47. Zhang, Y., Bian, T., Gu, J., Zheng, X. & Li, Z. Controllable ZnO architectures with the assistance of ethanolamine and their application for removing divalent heavy metals (Cu, Pb, Ni) from water. *New J. Chem.* **42**, 3356–3362 (2018).
- 48. Chen, L. *et al.* In situ formation of La (OH)3 -poly (vinylidene fluoride) composite fi Itration membrane with superior phosphate removal properties. *Chem. Eng. J.* **347**, 695–702 (2018).