Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2020

Electronic supplementary information

Arsenic adsorption on hematite facets: Spectroscopy and DFT study

Li Yan[†], Tingshan Chan[§], Chuanyong Jing^{†,‡,*}

[†]State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

* School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China

National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan

Tel: +86 10 6284 9523; Fax: +86 10 6284 9523

E-mail: cyjing@rcees.ac.cn

Text S1. *In situ* diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. DRIFT measurement was conducted using a Thermo 6700 FTIR spectrometer equipped with diffuse reflector accessory (Harrick Scientific) and a mercury cadmium telluride (MCT) detector. Spectra were collected using 256 scans with 4 cm⁻¹ resolution. Before spectra collection, a pretreatment by heating sample to 400 °C for 0.5 h under Ar flow (20 mL/min) was performed to clear surface impurities. Then the samples were cooled down to 100 °C, and the IR background spectrum was collected. After that, NH₃ flow (10 vol% NH₃/He, 10 mL/min) was filled for 60 min. Next, the gas was changed to Ar (20 mL/min), and the spectra for NH₃ desorption under Ar atmosphere were collected.

Text S2. Characterization of acid strength and heat of desorption. The strength of acid sites and heat of desorption were estimated from NH₃ temperature programmed desorption (NH₃-TPD) measurements using a Micromeritics AutoChem II 2920 chemisorption instrument. In a typical experiment, Fe₂O₃ nanocrystal was pre-treated under a flow of He to 500 °C at a heating rate of 20 °C/min to remove adsorbed water molecules. Then, NH₃ adsorption step was performed by initiating a flow of 10 vol% NH₃/He at room temperature for 60 min. Subsequently, the nanocrystal was exposed to He flow at 100 °C to remove reversibly and weakly bound NH₃ molecules from the surface. Subsequently, NH₃ desorption was carried out from 100 to 500 °C at a heating rate of 10, 5, 20, 2, 15, 7, 30, and 4 °C/min, respectively.

The heat of desorption (E_{des}) was calculated according to the following equation:¹

$$2 \ln Tp - 2\ln\beta = E_{des}/RTp + B$$

where Tp is the temperature (K) at maximum desorption rate; β is the heating rate; R is

the gas constant [R=8.314 J/(mol·K)]; and *B* is the intercept.

Text S3. *In situ* flow cell ATR-FTIR study. The *in situ* flow cell ATR-FTIR measurements were performed using a Thermo-Nicolet iS50R FTIR spectrometer equipped with a horizontal attenuated total reflectance (HATR) cell (PIKE Tech) and a liquid-nitrogen-cooled mercury-cadmium-telluride (MCT) detector. In a typical experiment, a 0.5 mL of the adsorbent suspension (4.0 g/L) was spread on the ZnSe crystal and air-dried at room temperature. To remove the loosely deposited particles and other impurities on the surface of the coated film, a 0.04 M NaCl solution at pH 7 was used to rinse the surface at a rate of 0.5 mL/min until there was no further change in the IR spectra (about 2 h). A background spectrum consisted of the adsorbance of the coated film and ZnSe crystal was collected and saved. Then 50 or 500 mg/L As(III/V) in 0.04 M NaCl solution were passed through the flow cell at pH 7. Spectra in the range of 4000 to 650 cm⁻¹ were collected with a time increment of 10 min until the adsorption reached equilibrium (about 3 h). All solutions were purged with N₂ in the dark during the spectra collection process.

The Omnic 9.2 software (Thermo Fisher Scientific Inc.,USA) was used to collect and analyze the spectra, including subtraction, normalization, and baseline correction. Deconvolution of the spectra was performed using the Peak-Fit software package (Systat Software Inc.). Second-derivative spectra were calculated to determine the number and centroid positions of contributing bands. The experimental spectra were then fitted by optimizing the amplitudes and the widths of the Gaussian functions, and the width of each band was consistent in all fitting.² To confirm the peak shift upon deprotonation, FTIR spectra of As(III/V) solutions in the absence of hematite-coated interface was performed at varied pH conditions. In the experiment, 40 mM As(III/V) solutions were spread on the ZnSe crystal, and the spectra were collected under similar conditions with that in the presence of hematitecoated interface.

Text S4. EXAFS study. EXAFS spectroscopy was employed to characterize the local coordination environment of adsorbed As(III/V) on Fe₂O₃ facets. The samples for EXAFS study were prepared by reacting 50 mg/L As(III/V) with 1 g/L Fe₂O₃ in 0.04 M NaCl solution at pH 7. After the suspensions were reacted for 24 h, the solid-liquid was separated by centrifugation and the wet paste was freeze-dried. The powdered sample was sealed between two layers of Kapton tape for EXAFS measurements.

The As K-edge spectra (11,867 eV) were collected on beamline 01C1 at the National Synchrotron Radiation Research Center (NSRRC), Taiwan. The spectra were collected in fluorescence mode using a standard Lytle detector, and acquired at cryogenic temperature (about 85 K) using a helium cryostat to prevent beam-induced oxidation. To eliminate the effect of Fe fluorescence, germanium (Ge) filter was added before Lytle detector. Monochromatic X-rays were produced with a Si(111) double crystal monochromator with an intrinsic resolution $\Delta E/E$ of 1.4×10^{-4} . The beam size was adjusted to 2 mm×1 mm. The energy calibration of the monochromator was checked by a Au foil (first maximum of the first derivative of the Au L₃-edge XANES spectrum at 11,919 eV). The scans for EXAFS data started at 11,667 eV using a step size of 10 eV. Across the edge the step size was reduced to 0.6 eV. The EXAFS was collected with a resolution of 0.06 Å⁻¹ in *k*-space. Multiple scans were collected for

each sample to improve the signal-to-noise ratio, and the spectra were inspected for overall quality, and averaged.

Text S5. DFT calculations. Periodic DFT calculations were performed with VASP 5.4 package. The bulk unit cell of hematite $(\alpha$ -Fe₂O₃) was first geometry-optimized, resulting in a lattice parameters of a=b=5.035 Å and c=13.720 Å, which were in good agreement with experiment (a=b=5.036 Å and c=13.749 Å, JCPDS No. 33-0664), and other DFT calculations.³ Hematite {001}, {110}, and {214} facets were cleved from the optimized bulk structure, and a neutrally-charged 2×2 supercell with Fe₃₂O₄₈ for {001} slab, 1×2 supercell with $Fe_{32}O_{48}$ for {110} slab, and 1×2 supercell with $Fe_{48}O_{72}$ for {214} slab were built. A vacuum slab of 20 Å was added to separate each slab in the direction along the surface normal. The lattice parameters were as follows: for {001} facet, a = b = 10.07 Å, c = 28.55 Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$; for {110} facet, a =7.40 Å, b = 10.84 Å, c = 29.57 Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 95.7^{\circ}$; for {214} facet, a = 12.49 Å, b = 10.84 Å, c = 28.62 Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 86.6^{\circ}$. Full geometry optimization was carried out with no imposed symmetry on the entire slab, with structural convergence set to a force tolerance of 0.05 eV/Å and an energy tolerance of 1.0×10^{-5} eV. K-points of $3 \times 3 \times 1$ for {001}, $3 \times 2 \times 1$ for {110}, and $3 \times 2 \times 1$ for {214} facet, respectively, were modeled using a Monkhorst-Pack mesh. Electrostatically neutral H₃AsO₃ and H₃AsO₄ molecules were independently geometry-optimized in a periodic box of 10 Å sidelengths, and then was added to the optimized {001}, {110}, and {214} facets to build the adsorption structures.

DFT calculations were carried out using the generalized gradient approximation (GGA) approach of Perdew-Burke-Ernzerhof (PBE) for the exchange-correlation

energy calculation.⁴ The energy cutoff was set to 400 eV. On-site Coulomb potential (DFT+U) correction was applied to the 3d electron of Fe atoms with U=5.0 eV. Hematite exhibits an antiferromagnetic ground state, with alternating double layers of spin-up and spin-down electrons perpendicular to c-axis.⁵ To model the antiferromagnetic configuration of hematite, spin-polarized calculations were carried out with high spin state (S = 5/2) identified as the most stable configuration.⁶ Electronic structure analysis was performed with the LOBSTER 3.2 program.⁷ The partial density of states (PDOS) and crystal orbital Hamilton populations (COHP) were used to analyze bonding chemistry of surface complexes.^{8, 9} The PDOS plots provide information on the partial electron density distribution of a particular atomic orbital. The COHP densities give the electron density distribution of bonding and antibonding orbital fragments. The negative contributions of COHP (–COHP) were plotted, and the positive/negative peaks in the plots indicate the bonding/antibonding interaction regimes. All the figures were plotted with the Fermi level set as the reference point at 0 eV.⁶

The surface energy (γ) of each facet was calculated as following equation:

$$\gamma = \frac{E_{slab} - NE_{bulk}}{2A}$$

where E_{slab} is the total energy of the slab, E_{bulk} is the energy per unit of Fe₂O₃, N is the total number of Fe₂O₃ units contained in the slab model, and A is the surface area of slab.

The surface energy (γ) of hydrated surface was calculated as following equation:

$$\gamma = \frac{E_{slab} - NE_{bulk} - 8E_{molecule}}{2A}$$

where E_{slab} is the total energy of the slab, E_{bulk} is the energy per unit of Fe₂O₃, $E_{molecule}$ is the energy of one water molecule, *N* is the total number of Fe₂O₃ units contained in the slab model, and *A* is the surface area of slab.

The adsorption energy (E_{ads}) in eV for surface complex was calculated according to the following equation:¹⁰

$$E_{ads} = E_{molecule+slab} - (E_{slab} + E_{molecule})$$

where $E_{molecule+slab}$ is the total energy of the surface complexes, and E_{slab} and $E_{molecule}$ represent the energy of surface and adsorbed molecule, respectively.

Text S6. Surface terminations.

The surface terminations were chosen based on the surface energy calculation, because according to Wulff's construction rule, crystal facets emerge from the thermodynamically-favored growth of facet with the lowest surface energy.^{11, 12} The layers with distinct terminations in the slab were numbered by sequence order beginning at the topmost layer.

As shown in Fig. S1 and Table S1, the single Fe layer termination on the {001} facet is most thermodynamically stable with surface energy (γ) of 1.63 J/m². On the {110} facet, the most stable surface is terminated by five-fold coordinated Fe with γ of 1.32 J/m². Our calculated surface energies of the {001} and {110} facets are consistent with previous report, which suggested γ values of 1.4 J/m² for {001} facet and 1.2 J/m² for {110} facet, respectively.¹³ On high-index {214} facet, the most stable surface is terminated by mixed Fe_{5c}, Fe_{4c}, and Fe_{3c} sites, and highly relaxed surface configuration show a γ value of 1.77 J/m² (Layer 2 in Fig. S1). Surface termination with the lowest surface energy is the representative surface in the aqueous systems. Although the ideal

structural modes may not completely represent the naturally occurring Fe_2O_3 -water interfaces, they provide a well-defined starting point to characterize the facet-dependent adsorption. This protocol is widely followed to investigate the solid-water interfacial adsorption mechanism in previous studies.¹³⁻¹⁶

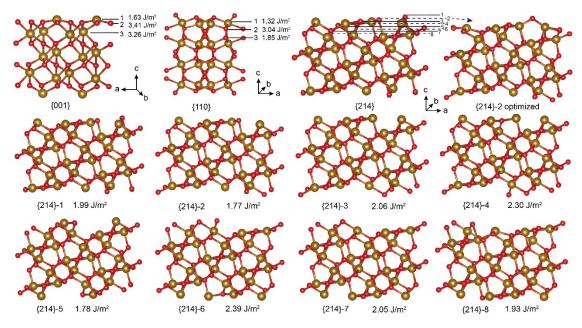


Fig. S1. Surface structures of Fe₂O₃ facets with atomic layering sequence.

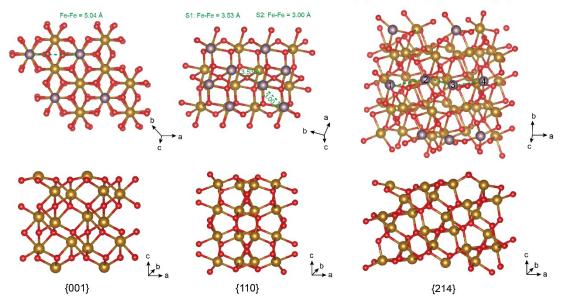

Facets	Termination	$E_{slab} \left(eV \right)$	$E_{bulk} \left(eV \right)$	A (Å ²)	γ (J/m ²)
{001}	Layer-1	-514.22	100.52		1.63
$Fe_{32}O_{48}$	Layer-2	-494.69	-199.53 (Fe ₁₂ O ₁₈)	87.82	3.41
	Layer-3	-496.41	$(\Gamma e_{12} O_{18})$		3.26
{110}	Layer-1	-518.95	100.52		1.32
Fe ₃₂ O ₄₈	Layer-2	-501.82	-199.53 (Fe ₁₂ O ₁₈)	79.81	3.04
	Layer-3	-513.69	$(\Gamma e_{12} O_{18})$		1.85
{214}	Layer-1	-764.62			1.99
Fe ₄₈ O ₇₂	Layer-2	-768.32			1.77
	Layer-3	-763.42			2.06
	Layer-4	-759.24	-199.53	135.18	2.30
	Layer-5	-768.09	$(Fe_{12}O_{18})$	155.10	1.78
	Layer-6	-757.88			2.39
	Layer-7	-763.60			2.05
	Layer-8	-765.56			1.93

Table S1. DFT calculated surface energy (γ) of Fe₂O₃ facets with distinct terminations.

Text S7. Raman spectra and surface structure.

Raman spectra show that the relative intensity of E_g peaks was lowest for {110} nanorod, but highest for {001} nanoplate, suggesting different atomic structures and O– Fe–O vibration modes on each facet (Fig. S2). A_{1g} peaks are attributed to antisymmetric stretching and bending vibrations of O–Fe–O in Fe₂O₃, and E_g peaks are ascribed to the symmetric vibration modes of O–Fe–O.¹⁷ On {001} facet, the bonding modes are threecoordinated 3c-Fe and 3c-O (Fig. 1h). Due to the C_{3v} symmetry of O–Fe–O bond by coordinating 3c-Fe with 3c-O, the number of the symmetric vibration modes of O–Fe– O was increased in the presence of {001} facet, and thus the intensity of the E_g peaks in Raman spectra was increased. On {110} facet, 5c-Fe, 3c-O, and 2c-O bonding modes are distributed on the surface; due to the large number of unsaturated 5c-Fe, the number of antisymmetric vibration modes of O–Fe–O become obvious, and the intensity of the A_{1g} peaks become increased. On {214} facet, complex bonding modes of 5c-Fe, 4c-Fe, 3c-Fe, 3c-O, and 2c-O were observed; thus, the intensities of the A_{1g} and E_g peaks are compromised when compared to those on {001} and {110} facets.

S1: Fe₁-Fe₂ = 3.52 Å S2: Fe₁-Fe₃ = 2.82 Å S3: Fe₂-Fe₃ = 3.09 Å

Fig. S2. The top view and corresponding side view of atomic arrangement on Fe₂O₃ {001}, {110}, and {214} facets. The red, purple, and brown spheres represent O, undercoordinated Fe, and bulk Fe atoms, respectively. Under-coordinated Fe atoms on the {001} facet are three-coordinated Fe_{3c} sites, and under-coordinated Fe atoms on the {110} facet are five-coordinated Fe_{5c} sites. On the {214} facet, numbered (1, 2, 3, and 4) purple spheres presented three-coordinated Fe_{3c} site, five-coordinated Fe_{5c} site, and two types of four-coordinated Fe sites (Fe_{4c}-1 and Fe_{4c}-2).

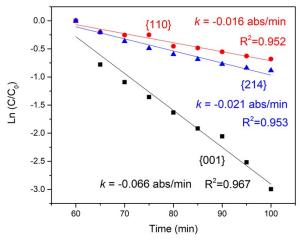


Fig. S3. Pseudo-first order kinetics model simulation for NH_3 desorption on the {001}, {110}, and {214} facets.

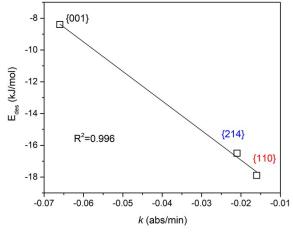


Fig. S4. The linear relationship of heat of desorption with NH₃ desorption rate.

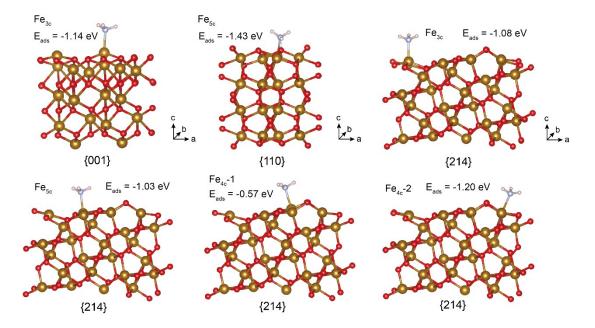
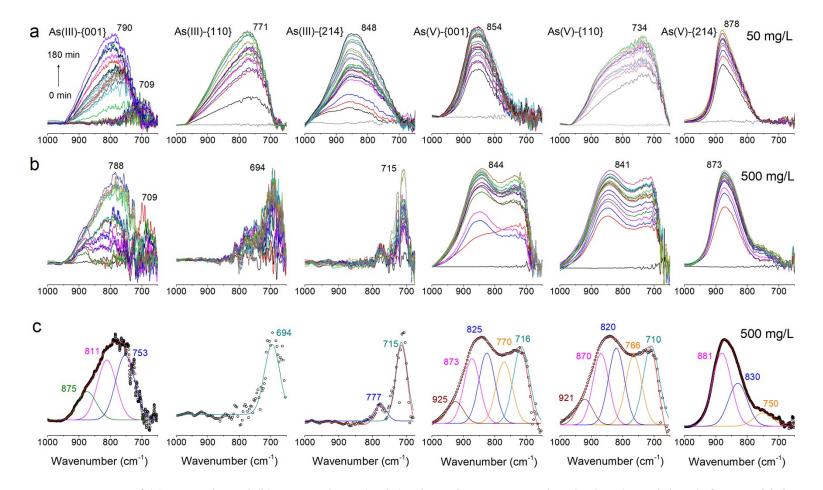


Fig. S5. DFT-optimized NH_3 adsorption configurations at different sites on the {001}, {110}, and {214} facets, the E_{ads} was calculated in Table S2.

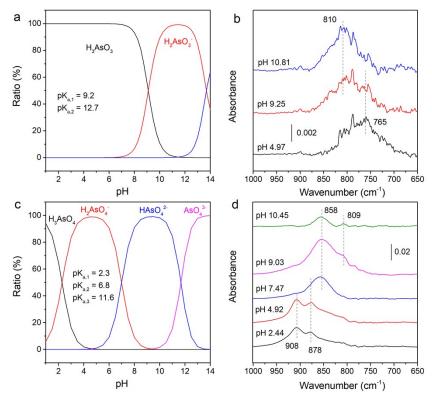
Facet	Site	NH ₃ +slab	Slab	NH ₃	Eads
{001}	Fe _{3c}	-534.87	-514.22	-19.51	-1.14
{110}	Fe _{5c}	-539.89	-518.95	-19.51	-1.43
{214}	Fe _{3c}	-788.91	-768.32	-19.51 -19.51	-1.08
	Fe _{5c} Fe _{4c} -1	-788.86 -788.40	-768.32 -768.32	-19.51	-1.03 -0.57
	Fe_{4c} -2	-789.04	-768.32	-19.51	-1.20

Table S2. NH₃ adsorption energies (eV) on Fe₂O₃ $\{001\}$, $\{110\}$, and $\{214\}$ facets.

Hematite	BET	pHpzc	As concentration	pН	Adsorbent	Adsorption	Surface	Ref
	(m^{2}/g)		(mg/L)		(g/L)	capacity (mg/g)	loading (mg/m ²)	
Flower like α -Fe ₂ O ₃	130		$[As(V)]_0 = 10-200$	3	0.4	51	0.392	18
3D flowerlike α -Fe ₂ O ₃	40		$[As(V)]_0 = 0.10.63$	4	2	7.6	0.190	19
Hollow Nestlike α -Fe ₂ O ₃	152.42		$[As(V)]_0 = 0.500$		0.5	75.3	0.494	20
Porous hematite	73.458	6.0	$[As(III)]_e = 0-12$	6	1	14.46	0.197	21
Porous hematite	93	6.8	$[As(V)]_0 = 2-45$	7	1	8.94	0.096	22
Porous hematite	3.75		$[As(v)]_e = 0.15$	5	30	0.65	0.173	23
Portland cement-porous	22.86		$[As(III)]_e = 0-21$	7	1	9.84	0.430	24
hematite								
Iron oxide nanoparticles	11.47	9.6	$[As(V)]_0 = 0.1-2$	6	2	2.325	0.203	25
Synthetic hematite	76.25		$[As(III)]_0 = 2-150$	9	0.2	109.89	1.441	26
2	76.25		$[As(V)]_0 = 2-150$	3	0.2	181.82	2.385	
Synthetic hematite	162		$[As(III)]_0 = 0-200$	7	0.02-0.06	95	0.586	27
5	162		$[As(V)]_0 = 0.200$	7	0.02-0.06	47	0.290	
α -Fe ₂ O ₃ /diatomite	30		$[As(III)]_0 = 5-90$	3.5	0.4	60.65	2.022	28
	30		$[As(V)]_0 = 5-90$	3.5	0.4	81.16	2.705	
Synthetic α -Fe ₂ O ₃	22.5		$[As(III)]_e = 0.4.5$	4	1	4.217	0.187	29
Natural hematite	0.381		$[As(III)]_e = 0.37.5$	7.3		0.27	0.698	30
	0.381		$[As(V)]_e = 0.37.5$	7.3		0.83	2.175	
Natural hematite	14.4	7.1	$[As(V)]_0 = 1-10$	4.2	40	0.2188	0.015	31
Natural hematite		6.5	$[As(III)]_0 = 0.025 - 0.5$	6.5	0.1	1.94		32
Natural hematite	3.77	6.5	$[As(V)]_0 = 5-50$	5	5	0.752	0.200	33
Commercial hematite	5.05		$[As(V)]_0 = 0.6$	5-9	0.05-1	0.47-0.66	0.093-0.131	34
Commercial hematite	1.66	8.1	$[As(V)]_0 = 0.075-15$	6	4	0.412	0.248	35
Commercial Fe ₂ O ₃	50		$[As(III)]_0 = 0.01-2$	6.8-8	0.01	2.899	0.058	36
-	50		$[As(V)]_0 = 0.01-2$	6.8-8	0.01	4.122	0.082	
Commercial Fe ₂ O ₃	4.159		$[As(III)]_{e} = 0.35$	7	1	0.845	0.203	37
Hematite			$[As(III)]_0 = 1-135$	7	0.42	32.80		38
			S13					


Table S3. Summary of As(III/V) adsorption on hematite.

$\{001\}$ Fe ₂ O ₃	4.7	$[As(III)]_0 = 1-200$	7	1	5.9	1.26	This
	4.7	$[As(V)]_0 = 1-200$	7	1	4.0	0.85	work
$\{110\}$ Fe ₂ O ₃	17.9	$[As(III)]_0 = 1-200$	7	1	7.7	0.43	
	17.9	$[As(V)]_0 = 1-200$	7	1	4.9	0.27	
$\{214\}$ Fe ₂ O ₃	18.9	$[As(III)]_0 = 1-200$	7	1	8.3	0.44	
	18.9	$[As(V)]_0 = 1-200$	7	1	5.9	0.31	


Text S8. ATR-FTIR study.

The IR spectra of dissolved As(III) and As(V) were derived by subtracting the spectrum of deionized water. The first and second pKa values for As(III) are relatively high ($pK_{a,1} = 9.2$ and $pK_{a,2} = 12.7$, Fig. S7a), indicating that the fully protonated As(OH)₃ species should be the predominant species at pH < 9. Fig. S7b reveals a broad band centered at 765 cm⁻¹ ascribed to As–(OH) vibrations at pH 4.97. At pH 10.81 with dominant H₂AsO₃⁻ species, a broad band at 810 cm⁻¹ was observed, indicating the peak shift to high frequency upon As–OH deprotonation. Therefore, the peak shift from 709 cm⁻¹ to 790 cm⁻¹ for adsorbed As(III) can be ascribed to the deprotonation of As–OH upon adsorption.

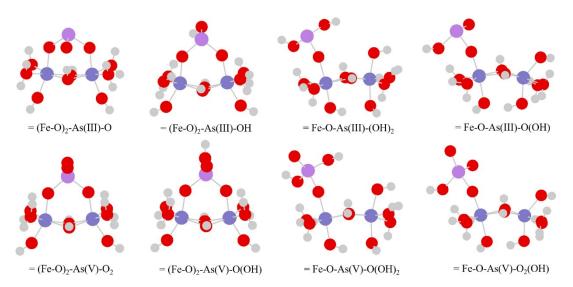

Four protonation states of As(V) include H_3AsO_4 , $H_2AsO_4^-$, $HAsO_4^{2-}$, and AsO_4^{3-} with corresponding pKa values at 2.3, 6.8, and 11.6 (Fig. S7c). Fig. S7d presents the FTIR spectra of dissolved As(V) recorded at different pH values. At pH=2.44, the dominant species in solution are H_3AsO_4 (39%) and $H_2AsO_4^-$ (61%), showing two IR active modes for the symmetric and asymmetric As–O stretches at 878 cm⁻¹ and 908 cm⁻¹.² These frequencies remain unchanged upon increasing the pH to 4.92 with dominant $H_2AsO_4^-$ (100%), verifying that neither mode arises from the fully protonated H_3AsO_4 . At pH=7.47, the dominant species in solution are $HAsO_4^{2-}$ (76%) and $H_2AsO_4^-$ (24%), and the asymmetric As–O stretch in $HAsO_4^{2-}$ gives rise to a strong, signature vibrational band at 858 cm⁻¹, in good agreement with previous results.², ³⁹ The peak at 858 cm⁻¹ persists at pH range of 9.03-10.45, and a new band is observed at 809 cm⁻¹, which can be assigned to the As–O vibrations for the totally deprotonated AsO₄³⁻.⁴²

Fig. S6. ATR-FTIR spectra of (a) 50 mg/L and (b) 500 mg/L As(III/V) adsorption on Fe₂O₃ {001}, {110}, and {214} facets with increasing time at pH 7. (c) Observed (circles) and peak fitting results (lines) for 500 mg/L As(III/V) adsorption. The peak assignment is presented in Table S5.

Fig. S7. (a) As(III) and (c) As(V) species calculated in MINTEQ software. FTIR spectra of 40 mM (b) As(III) and (d) As(V) solutions recorded at different pH conditions.

Fig. S8. As(III) and As(V) surface complexes for IR spectra calculation. Fe: blue, O: red, As: purple, H: grey.

Color in Figure 4	Peak position (cm ⁻¹)	Peak area (%)	Assignment	Calculated position (cm ⁻¹)
{001}-As(III)	(0111)	(/0)		(0111)
Blue	767	39.8	v_s As-OFe = Fe-O-As(III)-(OH) ₂	761
Magenta	821	38.1	$v \text{As-OH} = \text{Fe-O-As(III)-(OH)}_2$	821
Olive	878	_ 22.2	$v \text{ As-O} = \text{Fe-O-As(III)-(OH)}_2$	_ 855
{110}-As(III)				
Blue	743	31.7	v_s As-OFe = (Fe-O) ₂ -As(III)-O	742
Magenta	794	31.4	v_s As-OFe = (Fe-O) ₂ -As(III)-OH	794
Olive	849	25.2	v_{as} As-O = (Fe-O) ₂ -As(III)-O	871
Wine	906	11.7	v Fe-O = (Fe-O) ₂ -As(III)-OH	_ 900
{214}-As(III)				
Blue	750	16.0	v_s As-OFe = (Fe-O) ₂ -As(III)-O	742
Magenta	805	27.7	v_s As-OFe = (Fe-O) ₂ -As(III)-OH	794
Olive	856	33.8	$v_{as} \text{ As-O} = (\text{Fe-O})_2 \text{-As(III)-O}$	871
Wine	901	15.5	$v \text{ Fe-O} = (\text{Fe-O})_2 \text{-As}(\text{III}) \text{-OH}$	900
Dark yellow	943		$v \text{Fe-O} = (\text{Fe-O})_2 - \text{As}(\text{III}) - \text{OH}$	_ 945
{001}-As(V)				
Blue	791	18.8	v_s As-OFe = Fe-O-As(V)-O ₂ (OH)	789
Magenta	844	50.1	v_{as} As-O = Fe-O-As(V)-O ₂ (OH)	833
Wine			$v \text{Fe-O} = \text{Fe-O-As}(V) - O_2(OH)$	_ 913
{110}-As(V)				
Dark cyan	704	24.2	v_s As-OH = (Fe-O) ₂ -As(V)-O(OH)	712
Organe	752	24.9	v_s As-OFe = (Fe-O) ₂ -As(V)-O ₂	745
Blue	803	22.3	v_s As-OFe = (Fe-O) ₂ -As(V)-O(OH)	818
Magenta	859	18.0	v_{as} As-O = (Fe-O) ₂ -As(V)-O(OH)	860
Wine	900	10.5	$v \text{ Fe-O} = (\text{Fe-O})_2 - \text{As}(V) - O(OH)$	905
{214}-As(V)				
Blue	821	30.2	v_s As-OFe = (Fe-O) ₂ -As(V)-O(OH)	818
Magenta	879	69.8	v_{as} As-O = (Fe-O) ₂ -As(V)-O(OH)	860

Table S4. Peak fit and calculated modes of IR spectra for 50 mg/L As(III/V) adsorption on Fe₂O₃ facets.

Color in Figure 4	Peak position (cm ⁻¹)	Peak area (%)	Assignment	Calculated position (cm ⁻¹)
{001}-As(III)				
Blue	753	42.3	v_s As-OFe = Fe-O-As(III)-(OH) ₂	761
Magenta	811	39.1	$v \text{ As-OH} = \text{Fe-O-As(III)-(OH)}_2$	821
Olive	875	18.5	$v \text{ As-O} = \text{Fe-O-As}(\text{III}) - (\text{OH})_2$	855
{110}-As(III)				
Dark cyan	694		v_s As-OH = (Fe-O) ₂ -As(III)-OH	_ 693
{214}-As(III)				
Dark cyan	715	80.5	v_s As-OH = (Fe-O) ₂ -As(III)-OH	693
Blue	777	19.5	v_s As-OFe = (Fe-O) ₂ -As(III)-OH	_ 794
$\{001\}$ -As(V)				
Dark cyan	716	25.9	v_s As-OH = Fe-O-As(V)-O(OH) ₂	715
Orange	771	20.8	v_s As-OFe = Fe-O-As(V)-O ₂ (OH)	789
Blue	825	23.8	v_s As-OFe = Fe-O-As(V)-O(OH) ₂	819
Magenta	873	22.0	v_{as} As-O = Fe-O-As(V)-O(OH) ₂	853
_Wine	925	7.4	ν Fe-O = Fe-O-As(V)-O(OH) ₂	_ 936
$\{110\}$ -As(V)				
Dark cyan	710	26.4	v_s As-OH = (Fe-O) ₂ -As(V)-O(OH)	712
Organe	766	20.9	v_s As-OFe = (Fe-O) ₂ -As(V)-O ₂	745
Blue	820	23.2	v_s As-OFe = (Fe-O) ₂ -As(V)-O(OH)	818
Magenta	870	21.6	v_{as} As-O = (Fe-O) ₂ -As(V)-O(OH)	860
Wine	921	_ 7.8	$\nu \text{ Fe-O} = (\text{Fe-O})_2 - \text{As}(V) - O(OH)$	_ 905
{214}-As(V)				
Orange	750	10.2	v_s As-OFe = (Fe-O) ₂ -As(V)-O ₂	745
Blue	830	33.3	$v_s \text{ As-OFe} = (\text{Fe-O})_2 - \text{As}(V) - O_2$ $v_s \text{ As-OFe} = (\text{Fe-O})_2 - \text{As}(V) - O(OH)$	818
				818
Magenta	881	56.6	$v_{as} As-O = (Fe-O)_2 - As(V) - O(OH)$	800

Table S5. Peak fit and calculated modes of IR spectra for 500 mg/L As(III/V) adsorption on Fe_2O_3 facets.

Text S9. Identification of surface active site for As(III/V) adsorption by DFT calculations.

DFT-optimized As(III/V) adsorption configurations on bare facets are shown in Fig. S9, and the E_{ads} was calcuated in Table S6. Specifically, ¹V geometry of As(III/V) complex was observed on the {001} facet, due to a large distance of 5.04 Å for adjacent Fe atoms (Fig. S2).¹⁴ The E_{ads} values for As(III) and As(V) adsorption on the {001} facet were comparable (-1.49 eV, Table S6). Two adsorption configurations of As(III/V) on the {110} facet (S1 and S2 in Fig. S9) and three configurations on the {214} facet (S1-S3 in Fig. S9) were studied, due to different distances of adjacent Fe atoms on these two facets (Fig. S2).

The comparison of E_{ads} values revealed that the favorable ²C As(III/V) complex was resided at an Fe–Fe distance of 3.53 Å on the {110} facet, and the E_{ads} was estimated to be -2.57 eV for As(III) and -2.23 eV for As(V). On the {214} facet, the most favorable As(III/V) complex was located at an Fe–Fe distance of 3.52 Å, and the E_{ads} was calcualted to be -1.55 eV and -2.96 eV for As(III) and As(V) adsorption, respectively. By comparing E_{ads} values, the favorable active sites for As(III/V) adsorption are identified, which are one Fe_{3c} site on the {001} facet, two Fe_{5c} sites at an Fe–Fe distance of 3.53 Å on the {110} facet, and Fe_{3c} and Fe_{5c} sites at an Fe–Fe distance of 3.52 Å on the {214} facet.

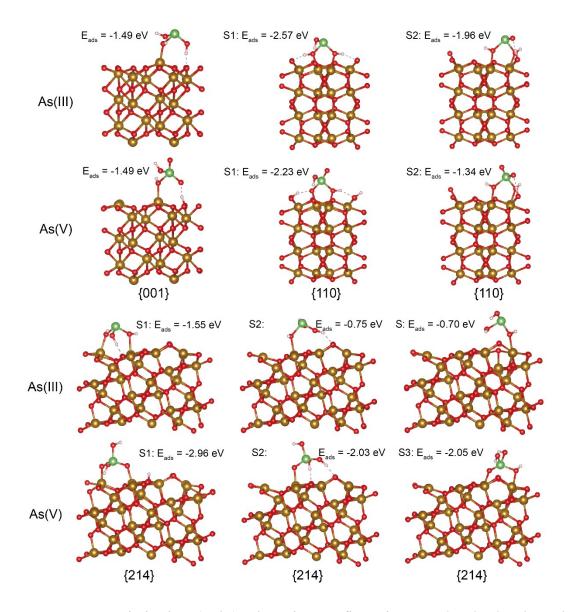
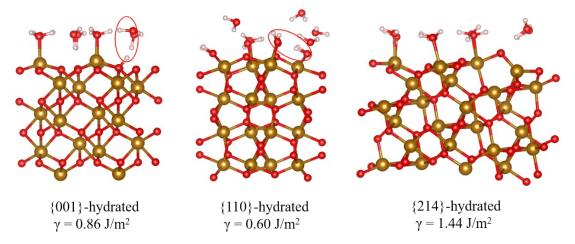



Fig. S9. DFT-optimized As(III/V) adsorption configurations on $\{001\}$, $\{110\}$, and $\{214\}$ facets, the E_{ads} was calculated in Table S6.

Facet	Structure	As(III)+slab	Slab	As(III)	E_{ads}
{001}	{001}-As(III)	-551.96	-514.22	-36.25	-1.49
{110}	{110}-As(III)-S1	-557.77	-518.95	-36.25	-2.57
	{110}-As(III)-S2	-557.16	-518.95	-36.25	-1.96
{214}	{214}-As(III)-S1	-806.13	-768.323	-36.25	-1.55
	{214}-As(III)-S2	-805.33	-768.323	-36.25	-0.75
	{214}-As(III)-S3	-805.27	-768.323	-36.25	-0.70
Facet		As(V)+slab	Slab	As(V)	E _{ads}
{001}	{001}-As(V)	-557.74	-514.22	-42.03	-1.49
{110}	{110}-As(V)-S1	-563.20	-518.95	-42.03	-2.23
	{110}-As(V)-S2	-562.31	-518.95	-42.03	-1.34
{214}	{214}-As(V)-S1	-813.31	-768.323	-42.03	-2.96
	{214}-As(V)-S2	-812.38	-768.323	-42.03	-2.03
	{214}-As(V)-S3	-812.40	-768.323	-42.03	-2.05

Fig. S10. DFT-optimized geometry of water molecules adsorption on $\{001\}$, $\{110\}$, and $\{214\}$ facets, the surface energy (γ) was calculated in Table S8. The red circles refer to the dissociative adsorption of water molecule.

Table S7. Adsorption energies (eV) of water molecule on Fe_2O_3 {001}, {110}, and {214} facets, as well as As(III/V) adsorption reaction and reaction energy in the water model.

Facets	Slab+8H ₂ O	Slab	H ₂ O	Number	E _{ads} (per H ₂ O)
{001}	-636.35	-514.22	-14.22	8	-1.05
{110}	-639.82	-518.95	-14.22	8	-0.89
{214}	-887.59	-768.32	-14.22	8	-0.69

Adsorption reactions and reaction energy calculation

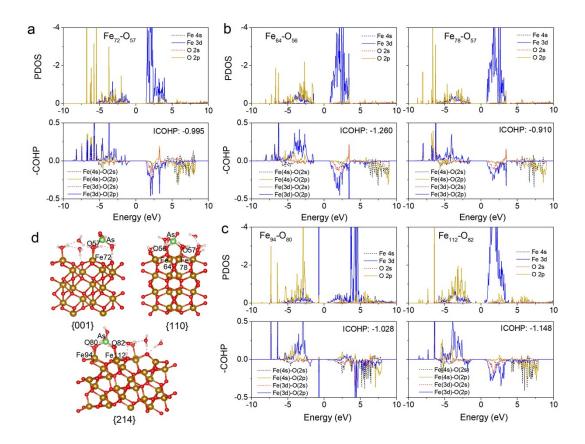
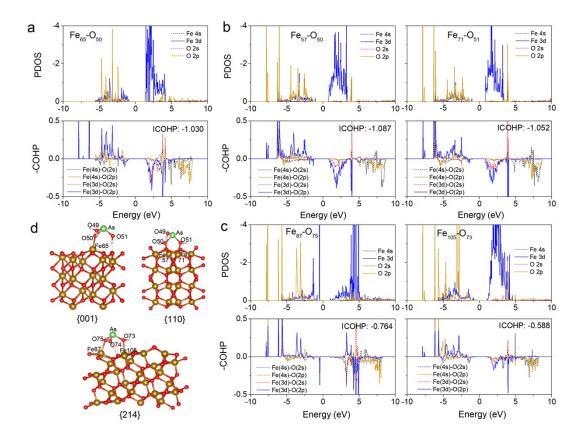

{001}-As(III)	$[(Fe_{32}O_{48})(H_2O)_8] + H_3AsO_3 \rightarrow [(Fe_{32}O_{48})(H_2O)_6] - H_3AsO_3 + 2H_2O$ $E_{rect} = 1.07 \text{ eV}$
{001}-As(V)	$[(Fe_{32}O_{48})(H_2O)_8] + H_3AsO_4 \rightarrow [(Fe_{32}O_{48})(H_2O)_6] - H_3AsO_4 + 2H_2O \\ E_{rect} = 0.97 \text{ eV}$
{110}-As(III) {110}-As(V)	$\begin{split} & [(Fe_{32}O_{48})(H_2O)_8] + H_3AsO_3 \rightarrow [(Fe_{32}O_{48})(H_2O)_6] - H_3AsO_3 + 2H_2O\\ & E_{rect} = -0.73 \text{ eV}\\ & [(Fe_{32}O_{48})(H_2O)_8] + H_3AsO_4 \rightarrow [(Fe_{32}O_{48})(H_2O)_6] - H_3AsO_4 + 2H_2O\\ & E_{rect} = -0.53 \text{ eV} \end{split}$
{214}-As(III)	$[(Fe_{48}O_{72})(H_2O)_8] + H_3AsO_3 \rightarrow [(Fe_{48}O_{72})(H_2O)_6] - H_3AsO_3 + 2H_2O$ $E_{rect} = -0.68 \text{ eV}$
{214}-As(V)	$[(Fe_{48}O_{72})(H_2O)_8] + H_3AsO_4 \rightarrow [(Fe_{48}O_{72})(H_2O)_6] - H_3AsO_4 + 2H_2O$ E _{rect} = -1.27 eV

Table S8. DFT calculated surface energy (γ) for hydrated surfaces.

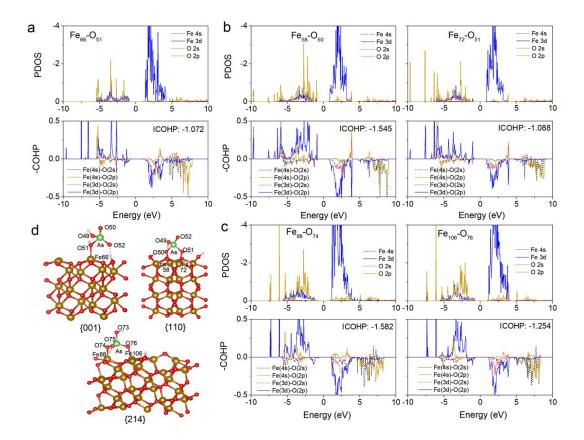
Facet	E _{slab} (eV)	$E_{bulk}\left(eV ight)$	$E_{molecule}(eV)$	A (Å ²)	$\gamma \left(J/m^{2} ight)$
{001}	-636.35 (Fe ₃₂ O ₄₈ +8H ₂ O)	100.52		87.82	0.86
{110}	-639.82 (Fe ₃₂ O ₄₈ +8H ₂ O)	-199.53 (Fe ₁₂ O ₁₈)	-14.22	79.81	0.60
{214}	-887.59 (Fe ₄₈ O ₇₂ $+8H_2O$)	$(1^{\circ}C_{12}O_{18})$		135.18	1.44

surfaces.	Bar	Hydra	Hydrated surfaces			
	Bond	Distance	Average	Bond	Distance (Å)	Average
	As84-O49	(Å) 1.81	(Å)	As105-055	(A) 1.82	(Å)
	As84-049 As84-050	1.96	1.83	As105-055 As105-056	2.04	1.85
{001}-	As84-050 As84-051	1.73	1.65	As105-050 As105-057	2.04 1.71	1.05
As(III)	Fe65-O50	2.05	2.05	Fe71-O56	2.11	2.11
	Fe65-As84	3.52	3.52	Fe71-As105	3.43	3.43
		_ <u>5.52</u>		<u></u>		3.43
	As85-O49	1.79		As106-O55	1.80	
	As85-O50	1.65	1.76	As106-O56	1.65	1.75
{001}-	As85-O51	1.92	1.70	As106-O57	1.86	1.75
As(V)	As85-O52	1.67		As106-O58	1.69	
	Fe66-O51	2.02	2.02	Fe72-O57	2.06	2.06
	_ <u>Fe66-As85</u>	3.50	_3.50	_Fe72-As106_	_3.55	3.55
	As84-049	1.75		As105-055	1.79	
	As84-049 As84-050	1.73	1.84	As105-055 As105-056	1.79	1.83
	As84-050 As84-051	1.87	1.04	As105-050 As105-057	1.78	1.05
{110}-	Fe57-O50	2.02		Fe63-O56	1.92	
As(III)	Fe71-O51	2.02	2.03	Fe77-O57	2.08	2.03
	Fe57-As84	3.42		Fe63-As105	3.30	
	Fe71-As84	3.42	3.45	Fe77-As105	3.53	3.42
	As85-O49	1.75		As106-O55	1.76	
	As85-O50	1.75	1.75	As106-O56	1.74	1.75
	As85-O51	1.88	1.75	As106-O57	1.86	1.70
{110}-	As85-O52	1.63		As106-O58	1.64	
As(V)	Fe58-O50	1.93	1.98	Fe64-O56	2.00	2.05
	Fe72-O51	2.03	1.90	Fe78-O57	2.10	2.00
	Fe58-As85	3.25	3.34	Fe64-As106	3.26	3.35
	_Fe72-As85	_ <u>3.43</u>		Fe78-As106	_3.44	
	As124-073	1.85		As145-079	1.92	
	As124-074	1.74	1.83	As145-080	1.70	1.84
	As124-075	1.89	1.00	As145-081	1.90	1.01
{214}-	Fe87-O75	2.14		Fe93-O81	2.08	
As(III)	Fe105-073	2.28	2.21	Fe111-079	2.08	2.12
	Fe87-As124	3.66		Fe93-As145	3.53	
	Fe105-As124	3.62	3.64	Fe111-As145	3.80	3.67
	As125-073	1.75		As146-O79	1.77	
	As125-074	1.72	1.73	As146-O80	1.68	1.73
	As125-075	1.74	1.75	As146-081	1.77	1.75
{214}-	As125-076	1.70		As146-082	1.69	
As(V)	Fe88-O74	1.91	1.95	Fe94-O80	2.03	2.03
	Fe106-O76	2.00	1.95	Fe112-O82	2.03	2.05
	Fe88-As125	3.13	3.19	Fe94-As146	3.29	3.29
	Fe106-As125	3.24	3.17	Fe112-As146	3.30	5.27

Table S9. Comparison of bond length for As(III/V) complexes on hydrated and bare surfaces.


Fig. S11. PDOS (up panel) and –COHP (bottom panel) plots of the Fe–O bonds in As(V) complex on hydrated (a) {001}, (b) {110}, and (c) {214} facets. (d) DFT-optimized As(V) adsorption configurations on Fe_2O_3 facets. The red, brown, green, and white spheres represent O, Fe, As, and H atoms, respectively.

Structure	Bond	Atom	Atom	Distance (Å)	ICOHP (eV)
{001}-As(III)	1	As105	O55	1.82	-3.079
	2	As105	O56	2.04	-1.736
	3	As105	O57	1.71	-4.065
	4	Fe71	056	2.11	-0.889
{001}-As(V)	1	As106	O55	1.80	-3.228
	2	As106	O56	1.65	-5.053
	3	As106	O57	1.86	-2.680
	4	As106	O58	1.69	-4.376
	5	Fe72	057	2.06	-0.995
{110}-As(III)	1	As105	055	1.79	-3.387
()	2	As105	O56	1.78	-3.480
	3	As105	O57	1.92	-2.364
	4	Fe63	O56	1.97	-1.394
	5	Fe77	057	2.08	-0.994
{110}-As(V)	1	As106	O55	1.76	-3.586
(110) 115(1)	2	As106	O56	1.74	-3.870
	3	As106	O57	1.86	-2.737
	4	As106	O58	1.64	-5.313
	5	Fe64	O56	2.00	-1.260
	6	Fe78	057	2.10	-0.910
{214}-As(III)	1	As145	079	1.92	-2.379
{214}-A3(III)	2	As145 As145	079	1.92	-4.171
	3	As145	O80 O81	1.90	-2.462
	4	Fe93	081	2.08	-0.893
	5	Fe111	079	2.03	-0.772
$(214) A_{\alpha}(V)$	1	A a146	070	1 77	
${214}-As(V)$	1	As146	O79	1.77	-3.534
	2 3	As146	O80	1.68	-4.543
		As146	O81	1.77	-3.548
	4	As146	O82	1.69	-4.392
	5 6	Fe94	O80	2.03	-1.028
	0	Fe112	082	2.03	-1.148


Table S10. Analysis of bond length and ICOHP for As(III/V) complexes on hydrated Fe_2O_3 facets.

Text S10. Chemical bonding analysis for As(III/V) adsorption on bare surfaces.

Fig. S12 shows the plots of the negative contributions of COHP (–COHP) versus energy (relative to E_{fermi}) for coordinated O and Fe atoms in As(III) complex on bare Fe₂O₃ facets. For As(III) adsorption, the bond length and integrated crystal orbital Hamilton population (ICOHP) for coordinated Fe₅₇–O₅₀ (2.02 Å, -1.087 eV) and Fe₇₁– O₅₁ (2.04 Å, -1.052 eV) on the {110} facet were comparable to Fe₆₅–O₅₀ bond (2.05 Å, -1.030 eV) on the {001} facet (Table S11). The bond lengths and ICOHP for coordinated Fe₈₇–O₇₅ (2.14 Å, -0.764 eV) and Fe₁₀₅–O₇₃ (2.28 Å, -0.588 eV) on the {214} facet were observed. Similar bonding chemistry for As(V) adsorption was derived by analysis of bond length and ICOHP (Fig. S13), as evidenced by the coordinated Fe₆₆–O₅₁ (2.02 Å, -1.072 eV) on {001} facet, Fe₅₈–O₅₀ (1.93 Å, -1.545 eV) and Fe₇₂–O₅₁ (2.03 Å, -1.088 eV) on {110} facet, and Fe₈₈–O₇₄ (1.91 Å, -1.582 eV) and Fe₁₀₆–O₇₆ (2.00 Å, -1.254 eV) on {214} facet (Table S11).

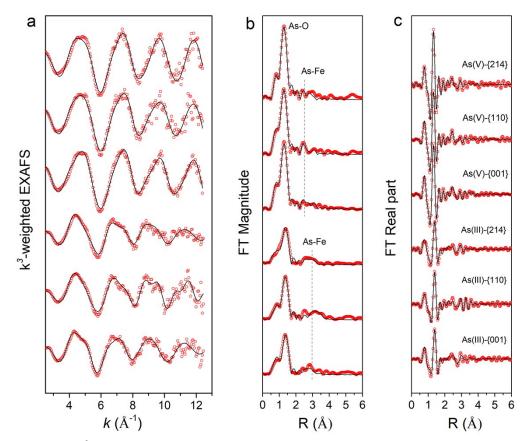

Fig. S12. PDOS (up panel) and –COHP (bottom panel) plots of the Fe–O bonds in As(III) complex on bare (a) $\{001\}$, (b) $\{110\}$, and (c) $\{214\}$ facets. (d) DFT-optimized As(III) adsorption configurations on Fe₂O₃ facets. The red, brown, green, and white spheres represent O, Fe, As, and H atoms, respectively.

Fig. S13. PDOS (up panel) and –COHP (bottom panel) plots of the Fe–O bonds in As(V) complex on bare (a) $\{001\}$, (b) $\{110\}$, and (c) $\{214\}$ facets. (d) DFT-optimized As(V) adsorption configurations on Fe₂O₃ facets. The red, brown, green, and white spheres represent O, Fe, As, and H atoms, respectively.

Structure	Bond	Atom	Atom	Distance (Å)	ICOHP (eV)
{001}-As(III)	1	As84	O49	1.81	-3.113
	2	As84	O50	1.96	-2.176
	3	As84	O51	1.73	-3.804
	4	<u>Fe65</u>	050	2.05	-1.030
{001}-As(V)	1	As85	O49	1.79	-3.225
	2	As85	O50	1.65	-4.944
	3	As85	O51	1.92	-2.251
	4	As85	O52	1.67	-4.590
	5	Fe66	051	2.02	
{110}-As(III)	1	As84	O49	1.75	-3.694
()	2	As84	O50	1.87	-2.733
	3	As84	O51	1.89	-2.572
	4	Fe57	O50	2.02	-1.087
	5	Fe71	051	2.04	-1.052
{110}-As(V)	1	As85	O49	1.75	-3.669
(110) 115(1)	2	As85	050	1.75	-3.774
	3	As85	050	1.88	-2.562
	4	As85	052	1.63	-5.397
	5	Fe58	O52 O50	1.93	-1.545
	6	Fe72	050	2.03	-1.088
{214}-As(III)	1	As124	073	1.85	-2.834
{214}-AS(III)	1 2	As124 As124	073 074	1.85	-2.834 -3.725
	23		074 075		-2.531
	3 4	As124		1.89	
		Fe87	075	2.14	-0.764
	5	Fe105	073	2.28	-0.588
{214}-As(V)	1	As125	O73	1.75	-3.711
	2	As125	O74	1.72	-4.130
	3	As125	075	1.74	-3.773
	4	As125	O76	1.70	-4.361
	5	Fe88	O74	1.91	-1.582
	6	Fe106	O76	2.00	-1.254

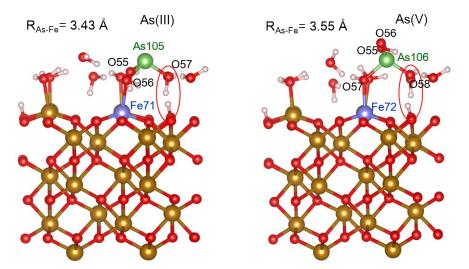
Table S11. Analysis of bond length and ICOHP for As(III/V) complexes on bare surfaces.

Fig. S14. (a) k^3 -weighted As K-edge EXAFS spectra and their corresponding (b) FT magnitude and (c) real parts for As(III/V) adsorption on Fe₂O₃ {001}, {110}, and {214} facets. The samples were prepared by reacting 50 mg/L As(III/V) on 1 g/L Fe₂O₃ in 0.04 M NaCl at pH 7. The experimental and fitted data are shown as symbols and lines, respectively. The fitted parameters are presented in Table S12.

Sample	Path	CN	R(Å)	$\sigma 2(\text{\AA}^2)$	$\Delta E(eV)$	R-factor
As(III)-{001}	As-O	2.9(3)	1.78(1)	0.003(2)	13.2(14)	0.039
	As-O-O	6	3.24	0.003		
	As-Fe	1	3.48(5)	0.010(8)		
As(III)-{110}	As-O	2.9(3)	1.77(1)	0.002(1)	8.5(17)	0.029
	As-O-O	6	3.10	0.002		
	As-Fe	1	3.36(4)	0.004(5)		
	As-Fe	1	3.64(5)	0.004(6)		
As(III)-{214}	As-O	3.0(3)	1.78(1)	0.004(2)	10.4(16)	0.038
	As-O-O	6	3.17	0.004		
	As-Fe	2	3.35(4)	0.013(6)		
As(V)-{001}	As-O	4.1(4)	1.69(1)	0.002(1)	7.4(12)	0.020
	As-O-O	12	3.15	0.002		
	As-Fe	1	3.27(5)	0.006(6)		
$\overline{As(V)}$ - $\overline{\{110\}}$	As-O	4.2(4)	1.69(1)	0.002(1)	5.3(14)	0.025
	As-O-O	12	3.10	0.002		
	As-Fe	2	3.25(6)	0.014(8)		
As(V)-{214}	As-O	4.0(4)	1.68(1)	0.001(1)	3.4(19)	0.033
	As-O-O	12	3.08	0.001		
	As-Fe	2	3.29(6)	0.016(11)		

Table S12. As K-edge EXAFS fitting results of As(III/V) adsorption on Fe₂O₃ {001}, {110}, and {214} facets.

Parameter uncertainties in parentheses are given for the last significant figure; values without reported uncertainties were fixed during the fitting. R(Å): mean half path length. CN: coordination number. $\sigma^2(Å^2)$: Debye-Waller factor. ΔE (eV): energy-shift


$$R \ factor = \sum_{i} (data_{i} - fit_{i})^{2} / \sum_{i} data$$
parameter.
The passive amplitude reducti

factor, S_0^2 , was fixed at 0.95.

ion

Text S11. Chemical bonding analysis for hydrogen-bonding effect.

For As(III) complex on the {001} facet, the bond length of uncoordinated As₁₀₅– O_{57} (1.71 Å) was shorter than that of uncoordinated As₁₀₅– O_{55} (1.82 Å, Table S10). The shrink of As₁₀₅– O_{57} bond was attributed to the deprotonation of As₁₀₅– O_{57} H by hydrogen-bonding interaction of H with surface O atoms (circle in Fig. S15). Similar hydrogen-bonding effect on As₈₁₀₆– O_{58} H was resolved for As(V) complex on {001} facet, resulting in reduced bond length and increased ICOHP for deprotonated As₁₀₆– O_{58} bond (1.69 Å, -4.376 eV) (Fig. S15, Table S10). The hydrogen-bonding effect facilitated As(III/V) molecules approaching to the surface, resulting in an As₁₀₅–Fe₇₁ distance of 3.43 Å for As(III) and As₁₀₆–Fe₇₂ distance of 3.55 Å for As(V) complexes.

Fig. S15. DFT-optimized geometry of As(III) and As(V) adsorption on hydrated {001} facet. The red circles refer to the hydrogen-bonding effect.

References

- 1. R. J. Madix, The application of flash desorption spectroscopy to chemical reactions on surfaces: Temperature programmed reaction spectroscopy, *Crit. Rev. Solid State*, 1978, 7, 143-152.
- 2. Y. Brechbuhl, I. Christl, E. J. Elzinga and R. Kretzschmar, Competitive sorption of carbonate and arsenic to hematite: Combined ATR-FTIR and batch experiments, *J. Colloid Interface Sci.*, 2012, **377**, 313-321.
- 3. S. E. Mason, C. R. Iceman, K. S. Tanwar, T. P. Trainor and A. M. Chaka, Pb(II) Adsorption on Isostructural Hydrated Alumina and Hematite (0001) Surfaces: A DFT Study, *J. Phys. Chem. C*, 2009, **113**, 2159-2170.
- 4. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 5. T. P. Trainor, A. M. Chaka, P. J. Eng, M. Newville, G. A. Waychunas, J. G. Catalano and G. E. Brown, Structure and reactivity of the hydrated hematite (0001) surface, *Surf. Sci.*, 2004, **573**, 204-224.
- 6. C. Liu, I. Tranca, R. A. van Santen, E. J. M. Hensen and E. A. Pidko, Scaling Relations for Acidity and Reactivity of Zeolites, *J. Phys. Chem. C*, 2017, **121**, 23520-23530.
- 7. R. Dronskowski and P. E. Blochl, Crystal Orbital Hamilton Populations (COHP): Energy-Resolved Visualization of Chemical Bonding in Solids Based on Density-Functional Calculations, J. Phys. Chem., 1993, **97**, 8617-8624.
- 8. R. A. van Santen and I. Tranca, How molecular is the chemisorptive bond?, *Phys. Chem. Chem. Phys.*, 2016, **18**, 20868-20894.
- 9. V. Fung, Z. L. Wu and D. E. Jiang, New Bonding Model of Radical Adsorbate on Lattice Oxygen of Perovskites, *J. Phys. Chem. Lett.*, 2018, **9**, 6321-6325.
- L. Yan, S. Hu, J. Duan and C. Jing, Insights from Arsenate Adsorption on Rutile (110): Grazing-Incidence X-ray Absorption Fine Structure Spectroscopy and DFT+U Study, J. Phys. Chem. A, 2014, 118, 4759-4765.
- 11. S. E. Seo, M. Girard, M. O. de la Cruz and C. A. Mirkin, Non-Equilibrium Anisotropic Colloidal Single Crystal Growth with DNA, *Nat. Commun.*, 2018, **9**, 4558.
- 12. G. Wulff, On the Question of Speed of Growth and Dissolution of Crystal Surfaces, Z. *Kristallogr.*, 1901, **34**, 449-530.
- Q. L. Yuan, P. F. Li, J. Liu, Y. Lin, Y. Y. Cai, Y. X. Ye and C. Liang, Facet-Dependent Selective Adsorption of Mn-Doped α-Fe₂O₃ Nanocrystals toward Heavy-Metal Ions, *Chem. Mater.*, 2017, 29, 10198-10205.
- 14. S. Y. Cao, X. Zhang, X. P. Huang, S. H. Wan, X. Z. An, F. L. Jia and L. Z. Zhang, Insights into the facet-dependent adsorption of phenylarsonic acid on hematite nanocrystals, *Environ. Sci. Nano*, 2019, **6**, 3280-3291.
- X. P. Huang, X. J. Hou, F. Wang, B. H. Guo, F. H. Song, L. Ling, J. C. Zhao and L. Z. Zhang, Molecular-scale structures of uranyl surface complexes on hematite facets, *Environ. Sci. Nano*, 2019, 6, 892-903.
- R. Gao, L. Pan, Z. Li, C. Shi, Y. Yao, X. Zhang and J.-J. Zou, Engineering Facets and Oxygen Vacancies over Hematite Single Crystal for Intensified Electrocatalytic H₂O₂ Production, *Adv. Funct. Mater.*, 2020, 30.
- 17. X. Gong, J. You, J. Wang and L. Lu, Simulated and Experimental Raman Spectroscopic Studies on the Micro-Structure of Several Iron Compounds, *Spectrosc. Spect. Anal.*, 2018, **38**, 241-242.
- C. Y. Cao, J. Qu, W. S. Yan, J. F. Zhu, Z. Y. Wu and W. G. Song, Low-Cost Synthesis of Flowerlike α-Fe₂O₃ Nanostructures for Heavy Metal Ion Removal: Adsorption Property and Mechanism, *Langmuir*, 2012, 28, 4573-4579.
- L.-S. Zhong, J.-S. Hu, H.-P. Liang, A.-M. Cao, W.-G. Song and L.-J. Wan, Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment, *Adv. Mater.*, 2006, 18, 2426-2431.
- Z. Wei, R. Xing, X. Zhang, S. Liu, H. Yu and P. Li, Facile Template-Free Fabrication of Hollow Nestlike α-Fe₂O₃ Nanostructures for Water Treatment, *ACS Appl. Mater. Inter.*, 2013, 5, 598-604.
- 21. X. T. Yang, L. Xia, J. L. Li, M. Dai, G. C. Yang and S. X. Song, Adsorption of As(III) on porous hematite synthesized from goethite concentrate, *Chemosphere*, 2017, **169**, 188-193.
- 22. K. Ramirez-Muniz, F. F. Jia and S. X. Song, Adsorption of As-V in aqueous solutions on porous hematite prepared by thermal modification of a siderite-goethite concentrate, *Environ. Chem.*,

2012, 9, 512-520.

- I. Carabante, J. Mouzon, J. Kumpiene, M. Gran, A. Fredriksson and J. Hedlund, Reutilization of Porous Sintered Hematite Bodies as Effective Adsorbents for Arsenic(V) Removal from Water, *Ind. Eng. Chem. Res.*, 2014, 53, 12689-12696.
- 24. W. Y. Xu, B. Q. Yang, F. F. Jia, T. X. Chen, L. Yang and S. X. Song, Removal of As(V) from aqueous solution by using cement-porous hematite composite granules as adsorbent, *Results Phys.*, 2018, **11**, 23-29.
- 25. A. Majumder, L. Ramrakhiani, D. Mukherjee, U. Mishra, A. Halder, A. K. Mandal and S. Ghosh, Green synthesis of iron oxide nanoparticles for arsenic remediation in water and sludge utilization, *Clean Techno. Environ.*, 2019, **21**, 795-813.
- 26. Z. M. Liu, J. T. Chen, Y. C. Wu, Y. R. Li, J. Y. Zhao and P. Na, Synthesis of magnetic orderly mesoporous α-Fe₂O₃ nanocluster derived from MIL-100(Fe) for rapid and efficient arsenic(III,V) removal, *J. Hazard. Mater.*, 2018, **343**, 304-314.
- W. S. Tang, Q. Li, S. A. Gao and J. K. Shang, Arsenic (III,V) removal from aqueous solution by ultrafine α-Fe₂O₃ nanoparticles synthesized from solvent thermal method, *J. Hazard. Mater.*, 2011, **192**, 131-138.
- Y. C. Du, H. G. Fan, L. P. Wang, J. S. Wang, J. S. Wu and H. X. Dai, α-Fe₂O₃ nanowires deposited diatomite: highly efficient absorbents for the removal of arsenic, *J. Mater. Chem. A*, 2013, 1, 7729-7737.
- J. X. Wang, R. S. Yuan, L. Y. Xie, Q. F. Tian, S. Y. Zhu, Y. H. Hu, P. Liu, X. C. Shi and D. H. Wang, Photochemical treatment of As(III) with α-Fe₂O₃ synthesized from Jarosite Waste, *Rsc Adv.*, 2012, 2, 1112-1118.
- 30. J. Gimenez, M. Martinez, J. de Pablo, M. Rovira and L. Duro, Arsenic sorption onto natural hematite, magnetite, and goethite, *J. Hazard. Mater.*, 2007, **141**, 575-580.
- 31. D. B. Singh, G. Prasad and D. C. Rupainwar, Adsorption technique for the treatment of As(V)rich effluents, *Colloids Surf.*, *A*, 1996, **111**, 49-56.
- B. Prasad, C. Ghosh, A. Chakraborty, N. Bandyopadhyay and R. K. Ray, Adsorption of arsenite (As³⁺) on nano-sized Fe₂O₃ waste powder from the steel industry, *Desalination*, 2011, 274, 105-112.
- 33. S. Aredes, B. Klein and M. Pawlik, The removal of arsenic from water using natural iron oxide minerals, *J. Clean. Prod.*, 2012, **29-30**, 208-213.
- Y. Jeong, M. Fan, S. Singh, C. L. Chuang, B. Saha and H. van Leeuwen, Evaluation of iron oxide and aluminum oxide as potential arsenic(V) adsorbents, *Chem. Eng. Process.*, 2007, 46, 1030-1039.
- 35. Y. Mamindy-Pajany, C. Hurel, N. Marmier and M. Romeo, Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility, *Desalination*, 2011, **281**, 93-99.
- 36. D. Dickson, G. L. Liu and Y. Cai, Adsorption kinetics and isotherms of arsenite and arsenate on hematite nanoparticles and aggregates, *J. Environ. Manage.*, 2017, **186**, 261-267.
- M. Dai, L. Xia, S. X. Song, C. S. Peng and A. Lopez-Valdivieso, Adsorption of As(V) inside the pores of porous hematite in water, *J. Hazard. Mater.*, 2016, **307**, 312-317.
- 38. Y. Wang, J. Lin, S. Wang, D. Zhang, F. Xiao, X. Wang and Y. Jia, Adsorption and transformation of thioarsenite at hematite/water interface under anaerobic condition in the presence of sulfide, *Chemosphere*, 2019, **222**, 422-430.
- 39. J. A. Sigrist and I. J. Burgess, ATR-IR spectroelectrochemical studies of arsenic speciation at the ferrihydrite-solution interface, *Can. J. Chem.*, 2019, **97**, 413-421.