A New Synthesized Highly-Stable Ag/N-Carbon Electrode for Enhanced Desalination by Capacitive Deionization

Yingjie He^a, Lei Huang^a, Yixian Zhaao^a, Weichun Yang^{a,b,d}, Taixu Hao^a, Bichao Wu^a,

Haoyu Deng^a, Dun, Wei^a, Haiying Wang^{a,b,d*} and Jian Luo^c

^a Department of Environmental Engineering, School of Metallurgy and Environment,

Central South University, Changsha, 410083, P.R. China.

^b Chinese National Engineering Research Center for Control & Treatment of Heavy

Metal Pollution, Changsha, 410083, P. R. China.

^c School of Civil and Environmental Engineering, Georgia Institute of Technology,

Atlanta, Georgia 30332-0355, United States.

^d Water Pollution Control Technology Key Lab of Hunan Province, Changsha,

410083, P. R. China

*Corresponding authors: Haiying Wang, haiyw25@yahoo.com

Content

- 1. Figure S1 The FTIR spectrum of PmPD (a) and AC (b) before and after adsorb Ag⁺.
- 2. Figure S2 SEM image of CNP (a), Ag/N-CNP-60-2 (b), Ag/N-CNP-120-24 (c) and c-AC-Ag-60-12 (d).
- 3. Figure S3 Particle size distribution of Ag/N-CNP-60-12.
- 4. Figure S4. The FTIR and Raman spectrums of the series of the Ag/N-CNP.
- 5. Figure S5 The CV curves of CNP and Ag/N-CNP-60-12 in 1M NaCl (a) and 500ppm Cl⁻ solution (b).
- 6. Figure S6 The Nyquist plot of CNP and Ag/N-CNP electrode in 1M NaCl and 500ppm Cl⁻ solution.
- 7. Figure S7 EDS mapping of Ag/N-CNP-60-12, initial (a, b), after10 cycles (c,d) and after 100 cycles (e, f).
- 8. Figure S8 Schematic of *in-situ* Raman experiments set-up.
- 9. Figure S9 The Raman spectra of purely AgCl.
- 10. Figure S10 Picture of the Ag/N-CNP-60-12 electrode at the initial, after electrosorption, and after electrodesorption.
- 11. Figure S11 The XRD spectra of initial Ag/N-CNP-60-12 and after 100 cycles.
- 12. Figure S12 XPS spectra of Ag 3d (a), N 1s (b) after 100 cycles.
- 13. Figure S13 Current-time plots of CNP and Ag/N-CNP electrodes.
- 14. Table S1 XPS elemental contents of CNP and Ag/N-CNP-60-12.
- 15. Table S2 EDS elemental contents of initial Ag/N-CNP-60-12.
- 16. Table S3 EDS elemental contents of Ag/N-CNP-60-12 after 10 cycles.
- 17. Table S4. EDS elemental contents of Ag/N-CNP-60-12 after 100 cycles.

Figure S1. The FTIR spectrum of PmPD (a) and AC (b) before and after adsorb Ag^+ .

Figure S2. SEM image of CNP (a), Ag/N-CNP-60-2 (b), Ag/N-CNP-120-24 (c) and c-AC-Ag-60-12 (d).

Figure S3. Particle size distribution of Ag/N-CNP-60-12.

Figure S4. The FTIR and Raman spectrums of the series of the Ag/N-CNP.

Figure S5. The CV curves of CNP and Ag/N-CNP-60-12 in 1M NaCl (a) and

500ppm Cl⁻ solution (b).

Figure S6. The Nyquist plot of CNP and Ag/N-CNP electrode in 1M NaCl (a) and

500ppm Cl⁻ solution (b).

Figure S7. EDS mapping of Ag/N-CNP-60-12, initial (a, b), after10 cycles (c,d) and after 100 cycles (e, f).

Figure S8. Schematic of *in-situ* Raman experiments set-up.

Figure S9. The Raman spectra of purely AgCl.

Figure S10 Picture of the Ag/N-CNP-60-12 electrode at the initial, after electrosorption, and after electrodesorption.

Figure S11. The XRD spectra of initial Ag/N-CNP-60-12 and after 100 cycles.

Figure S12. XPS spectra of Ag 3d (a), N 1s (b) after 100 cycles.

Figure S13. Current-time plots of CNP and Ag/N-CNP electrodes.

Samples	C 1s	Ag 3d	N 1s	O 1s
CNP	93.35	0.33	1.16	5.16
Ag/N-CNP-60-2	88.2	0.87	6.97	3.95
Ag/N-CNP-60-12	86.77	1.84	6.07	5.32
Ag/N-CNP-120-24	81.76	4.71	8.51	5.01

 Table S1. XPS elemental contents of CNP and Ag/N-CNP-60-12.

Element	Mass %	Atom %
C K (Ref.)	74.47	95.10
N K	0.56	0.62
ОК	0.91	0.87
Cl K	ND	ND
Ag K	24.06	3.42

 Table S2. EDS elemental contents of initial Ag/N-CNP-60-12.

Element	Mass %	Atom %
C K (Ref.)	76.19	95.79
N K	0.24	0.26
O K	0.79	0.70
Cl K	0.21	0.09
Ag K	22.62	3.16

 Table S3. EDS elemental contents of Ag/N-CNP-60-12 after 10 cycles.

Element	Mass %	Atom %
C K (Ref.)	78.19	96.39
N K	0.10	0.10
O K	0.58	0.54
Cl K	0.24	0.10
Ag K	20.89	2.89

Table S4. EDS elemental contents of Ag/N-CNP-60-12 after 100 cycles.