Supporting Information

Accelerated alkaline activation of peroxydisulfate by reduced rubidium tungstate nanorods for enhanced degradation of bisphenol A

Jian Hu, Xiangkang Zeng*, Yichun Yin, Yue Liu, Yang Li, Xiaoyi Hu, Lian Zhang, Xiwang Zhang

Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia

*Corresponding authors.

E-mail address: xiangkang.zeng@monash.edu (X. Zeng).

Text S1. Effects of HCO₃⁻ groups.

The BPA degradation efficiency was dramatically decreased from 92.0% to 35.2% when HCO_3^{-1} coexists in the alkaline rRT/PDS system. After further investigation, the HCO_3^{-1} affects the reaction in the following two aspects. Firstly, the pH of the solution decreased to 9.3 after adding 50 mM HCO_3^{-1} groups since HCO_3^{-1} can react with OH⁻¹ groups to generate CO_3^{-2-1} and H_2O (Eq. S1). According to the result in Fig. 3a, lower pH will result in a decrease of BPA degradation. Hence the degradation efficiency of BPA was affected a lot. Secondly, HCO_3^{-1} can quench SO_4^{-1} and $\cdot OH$ and generate CO_3^{-1} and HCO_3^{-1} radicals (Eqs. S2-S5) ². According to the previous study of Hu et al ⁻¹, CO_3^{-1} and HCO_3^{-1} radicals can also contribute to BPA degradation. Therefore, it would be hard to investigate the exact reason why the presence of HCO_3^{-1} reduced BPA degradation in this reaction.

$$HCO_{3}^{-} + OH^{-} \rightarrow CO_{3}^{2}^{-} + H_{2}O \tag{S1}$$

$$SO_{4}^{-} + CO_{3}^{2} \rightarrow SO_{4}^{2} + CO_{3}^{-}$$
 (S2)

$$SO_4^- + HCO_3^- \rightarrow SO_4^{2-} + HCO_3^-$$
(S3)

$$\cdot OH + CO_3^2 \rightarrow CO_3^- + OH^- \tag{S4}$$

$$\cdot OH + HCO_{3}^{-} \rightarrow CO_{3}^{-} + H_{2}O \tag{S5}$$

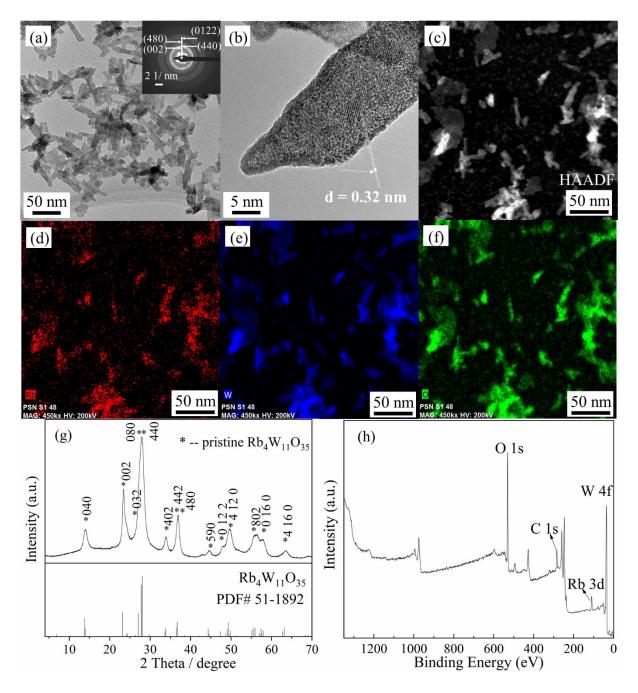
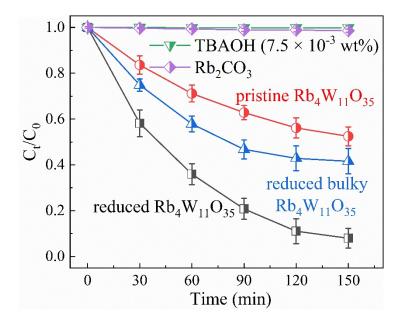



Figure. S1. (a) TEM and (b) HRTEM images of pristine Rb₄W₁₁O₃₅ materials. (c) HAADF-STEM image and (d) rubidium, (e) tungsten and (f) oxygen elemental mapping images of pristine Rb₄W₁₁O₃₅. (g) XRD pattern and (h) XPS survey spectra of the pristine Rb₄W₁₁O₃₅ nanorods.

Figure. S2. The BPA removal efficiency by reduced $Rb_4W_{11}O_{35}$ nanorods, reduced bulk Rb₄W₁₁O₃₅, pristine Rb₄W₁₁O₃₅, Rb₂CO₃ and TBAOH. Reaction conditions: 2 µM catalysts, 20 mM PDS, 5 mg/L BPA, initial pH = 11.0, *T* = 293 K.

Catalyst	Pollutants (mM)	PDS dosage (mM)	Catalyst dosage (g/L)	pH values	Time used for removal	Pseudo first- order rate constant (k)	R ² values	References
NaHCO ₃	Acetaminophen, 0.01	10	2.1	8.3	7 h, 70%	0.17 h ⁻¹	-	3
Glucose	Nitrobenzene, 1	200	0.9	12.5	8h, 98%	-	-	4
Mn _{0.6} Zn _{0.4} -Fe ₂ O ₄	BPA, 0.1	5	0.5	9.0	60min, 78%	-	-	5
Magnetite/Cu ²⁺	Anisole, 0.1	1.1	Magnetite- 0.5 Cu ²⁺ -6.4×10 ⁻³	11.0	22h,58%	-	-	6
Carbon nanotubes	Phenol, 0.1	1.0	0.1	11.0	60min, 90%	0.0146 min ⁻¹	0.935	7
rGO-Ag0/Fe3O4	BPA, 0.01	1.0	0.1	10.0	3h, 20%	-	-	8
reduced Rb ₄ W ₁₁ O ₃₅	BPA, 0.02 (5 mg/L)	20	5.8×10 ⁻³ g/L (2 μM)	11.0	150 min, 92 %	0.0173 min ⁻¹	0.9957	This work

Table S1. Comparison of different catalysts for base activation of PDS.

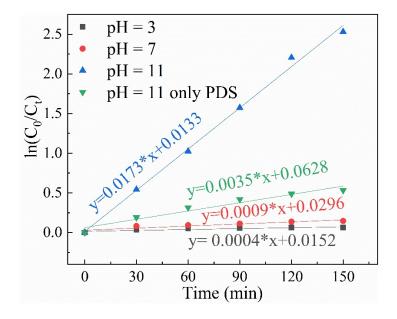
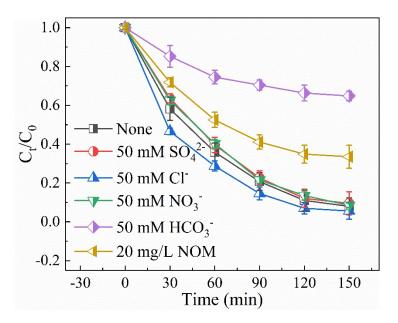
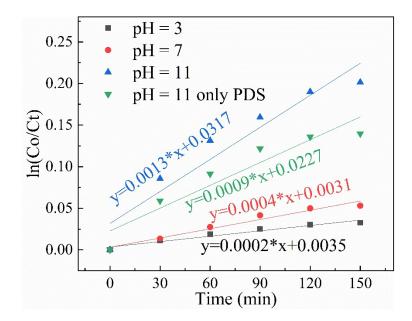



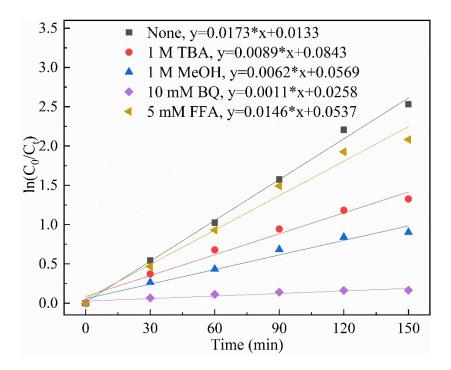
Figure. S3. Pseudo first-order kinetic curves of BPA removal under different initial pH values and conditions. Reaction conditions: 2 μ M reduced Rb₄W₁₁O₃₅ nanorods, 20 mM PDS, 5 mg/L BPA, T = 293 K.

 Table S2. Comparison of pseudo first-order rate constants under different initial pH values and conditions.

pH	Pseudo first-order rate	R ² values	
	constant (k_{obs} , min ⁻¹)		
3	0.0004	0.8025	
7	0.0009	0.8628	
11	0.0173	0.9957	
11 (only PDS)	0.0035	0.9458	

Figure. S4. Effects of inorganic anions SO_4^{2-} , Cl⁻, NO_3^{-} , HCO_3^{-} and NOM on the degradation of BPA in the alkaline rRT/PDS system. Reaction conditions: 2 μ M reduced Rb₄W₁₁O₃₅ nanorods, 20 mM PDS, 5 mg/L BPA, initial pH = 11.0, *T* = 293 K.




Figure. S5. Pseudo first-order kinetic curves of PDS decomposition under different initial pH values and conditions. Reaction conditions: $2 \mu M$ reduced Rb₄W₁₁O₃₅ nanorods, 20 mM PDS,

5 mg/L BPA, T = 293 K.

 Table S3. Comparison of pseudo first-order rate constants of PDS decomposition under

pH	Pseudo first-order rate	R ² values
	constant (k_{obs} , min ⁻¹)	
3	0.0002	0.9532
7	0.0004	0.9653
11	0.0013	0.914
11 (only PDS)	0.0009	0.8989

different initial pH values and conditions.

Figure. S6. Pseudo first-order kinetic curves of each quenching test. Reaction conditions: 2 μ M reduced Rb₄W₁₁O₃₅ nanorods, 20 mM PDS, 5 mg/L BPA, initial pH = 11.0, *T* = 293 K.

Radicals	Pseudo first-order rate	R ² values
Scavengers	constant (k_{obs} , min ⁻¹)	
none	0.0173	0.9957
1 M TBA	0.0089	0.9809
1 M MeOH	0.0062	0.9724
10 mM BQ	0.0011	0.9025
5 mM FFA	0.0146	0.9826

Table S4. Comparison of pseudo first-order rate constants under different quenching tests.

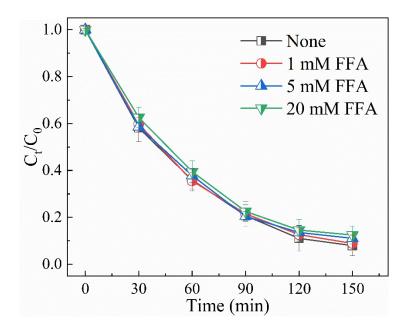


Figure. S7. Effect of FFA with different concentrations:1, 5 and 20 mM on the degradation

of BPA. Reaction conditions: 2 µM reduced Rb₄W₁₁O₃₅ nanorods, 20 mM PDS, 5 mg/L BPA,

initial pH = 11.0, T = 293 K.

References:

- 1. L. Hu, G. Zhang, M. Liu, Q. Wang and P. Wang, Enhanced degradation of Bisphenol A (BPA) by peroxymonosulfate with Co3O4-Bi2O3 catalyst activation: effects of pH, inorganic anions, and water matrix, *Chemical Engineering Journal*, 2018, **338**, 300-310.
- 2. A. Ghauch and A. M. Tuqan, Oxidation of bisoprolol in heated persulfate/H2O systems: kinetics and products, *Chemical Engineering Journal*, 2012, **183**, 162-171.
- 3. M. Jiang, J. Lu, Y. Ji and D. Kong, Bicarbonate-activated persulfate oxidation of acetaminophen, *Water research*, 2017, **116**, 324-331.
- 4. R. J. Watts, M. Ahmad, A. K. Hohner and A. L. Teel, Persulfate activation by glucose for in situ chemical oxidation, *Water research*, 2018, **133**, 247-254.
- 5. B. Deng, Y. Li, W. Tan, Z. Wang, Z. Yu, S. Xing, H. Lin and H. Zhang, Degradation of bisphenol A by electro-enhanced heterogeneous activation of peroxydisulfate using Mn-Zn ferrite from spent alkaline Zn-Mn batteries, *Chemosphere*, 2018, **204**, 178-185.
- 6. J. Chen, X. Zhou, Y. Zhu, Y. Zhang and C.-H. Huang, Synergistic Activation of Peroxydisulfate with Magnetite and Copper Ion at Neutral Condition, *Water Research*, 2020, 116371.
- W. Ren, L. Xiong, X. Yuan, Z. Yu, H. Zhang, X. Duan and S. Wang, Activation of peroxydisulfate on carbon nanotubes: Electron-transfer mechanism, *Environmental science & technology*, 2019, 53, 14595-14603.
- 8. C. M. Park, J. Heo, D. Wang, C. Su and Y. Yoon, Heterogeneous activation of persulfate by reduced graphene oxide–elemental silver/magnetite nanohybrids for the oxidative degradation of pharmaceuticals and endocrine disrupting compounds in water, *Applied Catalysis B: Environmental*, 2018, **225**, 91-99.