Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2020

Supplementary data

Enhanced denitrification of contaminated groundwater by novel bimetallic catalyst supported by kaolin-derived zeolite: Effects of natural dissolved inorganic and organic matter

Minhee Choi¹, Jaehyeong Park², Sunho Yoon¹, Yun Kyung Lee³, Jin Hur³, Jong Kwon

Choe², Taehui Nam^{4,5}, Sokhee P. Jung^{4,*,†}, Sungjun Bae^{1,*,†}

¹Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea

²Department of Civil and Environmental Engineering and Institute of Construction and Environmental

Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu Seoul 08826, Republic of Korea

³Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006,

South Korea

⁴Department of Environment and Energy Engineering, Chonnam National University, Gwangju 61186,

Republic of Korea

⁵Water Environmental Chemistry Research Division, Yeongsan River Environment Research Center, Gwangju

61011, Republic of Korea

*Corresponding author: bsj1003@konkuk.ac.kr; sokheejung@chonnam.ac.kr

phone: +82-02-450-3904, +82-62-530-1859

† Contributed equally to this work

A supplementary data submitted to Environmental Science-Nano

Chemicals and Materials

Sodium hydroxide (NaOH, 97.0%, Daejung Chemicals & Metals Co., Ltd., Korea) was used to synthesize zeolites from kaolin (Seoul Chemical Industry, Korea). Precursor solutions of Pd and In were prepared using palladium(II) chloride (99%, Sigma-Aldrich Inc., USA) and indium(III) chloride (98%, Sigma-Aldrich Inc., USA), respectively. The other Pd-In bimetallic catalysts supported by different materials were prepared using silicon dioxide (~99%, 0.5–10 µm, Sigma-Aldrich Inc., USA), aluminum oxide (99.5%, \leq 10 µm, Sigma-Aldrich Inc., USA), and zeolite A-4 (200 mesh, Wako Pure Chemicals Corp., Japan). Pd-In bimetallic catalysts were activated using 10 mM sodium borohydride (98%, Sigma-Aldrich Inc., USA) before the reaction.

Potassium nitrate (99.0%, Duksan Pure Chemical Co., Korea), potassium nitrite (99.0%, Sigma-Aldrich Inc., USA), and ammonium chloride (98.5%, Shinyo Pure Chemicals Co., Japan) were used to prepare the stock solutions of nitrate, nitrite, and ammonia, respectively. Calcium chloride dihydrate (99.0%, Junsei Chemical Co., Ltd., Japan), sodium chloride (99.0%, Samchun Pure Chemicals Co., Korea), and sodium sulfate (99.0%, Showa Chemical Industry Co., Japan) were used for standard solutions for ion chromatography (IC). Sodium bicarbonate (99.0%, Samchun Pure Chemicals Co., Korea), sodium carbonate (99.95%, Sigma-Aldrich Inc., USA), sulfuric acid (60%, Daejung Chemicals & Metals Co., Ltd., Korea), and nitric acid/dipicolinic acid (Sigma-Aldrich Inc., USA) were used to prepare eluents for IC operation.

Characterization of ZK70 and Pd-In/ZK70

The specific surface areas of ZK70 and Pd-In/ZK70 were measured by nitrogen adsorption and desorption at −196 °C with a Brunauer–Emmett–Teller surface analyzer (Tristar II, Micrometrics, USA). X-ray diffraction (XRD) analysis was performed to identify the mineral

phase using an automated diffractometer with Cu-KN radiation (DE/D8 advance, Bruker, Germany). The samples were scanned with 2θ in the range $10^{\circ}-50^{\circ}$ with a scan speed of 1° min⁻¹.

The samples for surface characterization of Pd-In/ZK70 after reduction of NO_3^-GW (reaction time = 180 min) were prepared as follows: after finishing the reaction, stirring and H₂ and CO₂ supplies were stopped and Ar purging was started to prevent a possible oxidation of the catalyst by air. The solution was then sealed and transferred to the anaerobic chamber to minimize the surface oxidation of the catalyst. The used Pd-In/ZK70 catalyst was vacuum-filtered using a mixed cellulose ester membrane filter (0.2 µm, Advantech, Japan). The collected catalyst was rinsed with DDIW, 50% deaerated ethanol, and 100% deaerated ethanol sequentially. All washed samples were dispersed in deaerated ethanol to prevent further oxidation before the analyses.

The morphological characteristics of kaolin, ZK70, and Pd-In/ZK70 were investigated using field emission scanning electron microscopy (FE-SEM) (SU8010, Hitachi, Japan), fieldemission transmission electron microscopy (FE-TEM) (JEM-F200, JEOL Ltd, Japan), and Cs-TEM (JEM-ARM200F, JEOL Ltd, Japan) equipped with energy-dispersive X-ray spectroscopy (EDX). The elemental dispersion of Pd, In, Si, Al, and O on the surface of ZK70 and Pd-In/Zk70 was identified by FE-TEM/EDX. The suspensions of ZK70, fresh Pd-In/ZK70, and used Pd-In/ZK70 were diluted with deaerated ethanol and sonicated for 10 min to completely disperse the particles. The droplets of the diluted samples were put on a 200 mesh copper TEM grid and dried in the anaerobic chamber. Samples were analyzed by FE-TEM at 200 kV.

The oxidation states of Pd and In on the surface of 1.25% Pd-0.25% In/ZK70 before activation, after activation with NaBH₄, and after reduction of NO₃⁻ in groundwater were investigated by XPS (K-Alpha, Thermo Scientific, USA) with Al K α X-ray (1486.7 eV)

radiation at a source power of 75 W. The C 1s peak at 285 eV was used as a reference. The narrow-scan spectra in the ranges 460–439 and 350–330 eV were obtained to identify the oxidation states of In and Pd species on the Pd-In/ZK70 surface, respectively.

ZK70, 1.25% Pd/ZK70, 0.25% In/ZK70, and 1.25% Pd-0.25% In/ZK70 were introduced into a conventional flow system for the TPR analysis (AutoChemII2920, Micromeritics Instrument Corp., USA) and examined in the temperature range of 50–1000 °C with ramping of 20°C /min. A stream of 10% H₂/Ar was passed through the system bed at a flow rate of 10 cm³/min.

The cumulative H₂ uptake, metal dispersion, metallic surface area, active particle diameter, cubic crystallite size, and active metal sites of 1.25% Pd/ZK70 and 1.25% Pd-0.25% In/ZK70 were obtained by H₂ pulse chemisorption using an AutoChemII2920 (Micromeritics Instrument Corp., USA). X% Pd/ZK70 and X% Pd-X% In/ZK70 were outgassed under vacuum, followed by reduction under the flow of 10% H₂/Ar for 2 h at 350 °C, followed by flushing with Ar for 1 h and cooling to 30 °C. The pulse chemisorption test was conducted at 30 °C by pulsing the 10% H₂/Ar.

Figure S1. FE-SEM images of (a, a1, and a2) kaolin, (b, b1, and b2) ZK70, and (c, c1, and c2) 1.25 wt% Pd-0.25 wt% In/ZK70.

Figure S2. FE-TEM/EDS results of (a) ZK70 and (b) 1.25 wt% Pd-0.25 w.% In/ZK70 after activation; EDS electron mapping of (a1 and b1) Pd, (a2 and b2) In, (a3 and b3) Al, (a4 and b4) Si, and (a5 and b5) O.

Figure S3. (a) The effect of Pd loading on $NO_{3^{-}aq}$ reduction by X wt.% Pd-0.5 wt% In/ZK70 (X = 0.5, 0.75, 1.0, 1.25, 1.5). (b) The effect of In loading on $NO_{3^{-}}$ reduction by 1.25 wt% Pd-X wt% In/ZK70 (X = 0.05, 0.15, 0.25, 0.5, 0.75).

Figure S4. (a) NO_{3⁻aq} removal, N₂ selectivity, rate constant (*k*), and Pd normalized rate constant (*k*'') of X wt% Pd-0.5 wt% In/ZK70 (X= 0.5, 0.75, 1.0, 1.25, 1.5). (b) NO_{3⁻aq} removal, N₂ selectivity, rate constant (*k*), and In normalized rate constant (*k*') of 1.25 wt% Pd-X wt% In/ZK70 (X = 0.05, 0.15, 0.25, 0.5, 0.75).

Figure S5. (a) The concentrations of NO_3^-aq , NO_2^- , and NH_4^+ as a function of reaction time during the catalytic reduction of NO_3^-aq by Pd-In/ZK70 (1.25 g/L, Pd = 1.25 wt%, In = 0.25 wt%) catalysts with only H₂, only CO₂, and both H₂ and CO₂, and without both H₂ and CO₂; H₂ flow rate = 45 cm³/min, CO₂ flow rate = 40 cm³/min. Reaction time was 90 min. (b) The concentrations of NO_3^-aq , NO_2^- , and NH_4^+ as a function of reaction time during the catalytic reduction of NO_3^-aq , NO_2^- , and NH_4^+ as a function of reaction time during the catalytic reduction of NO_3^-aq , NO_2^- , and NH_4^+ as a function of reaction time during the catalytic reduction of NO_3^- on only ZK70, Pd/ZK70 (Pd = 1.25 wt%), In/ZK70 (In = 0.25 wt%) and Pd-In/ZK70 (Pd = 1.25 wt%). Catalyst loading: 1.25 g/L.

Figure S6. (a) The removal kinetics of NO_2^- by 1.25 wt% Pd/ZK70 and 1.25 wt% Pd-0.25 wt% In/ZK70, (b) NO_2^- removal and byproduct selectivity of 1.25 wt% Pd/ZK70 and 1.25 wt% Pd-0.25 wt% In/ZK70.

Figure S7. XRD spectra of Pd-In/ZK70 before reaction, and after reaction in groundwater (Pd = 1.25 wt%, In = 0.25 wt%).

Figure S8. TEM images of Pd-In/ZK70 after reaction in real groundwater (Pd = 1.25 wt%, In = 0.25 wt%).

Figure S9. Survey scan of XPS for the sample of 1.25 wt% Pd-0.25 wt% In/ZK70 before and after reaction of NO_3^-GW reduction.

Figure S10. (a) Kinetics of NO_3^- reduction by 0.25g of 1.25 wt% Pd- 0.25 wt% In/ZK70 during five recycling test in groundwater without regeneration and reactivation process. (b) N_2 selectivity and NO_3^- removal by 0.25g of 1.25 wt.% Pd- 0.25 wt.% In/ZK70 on repeated five recycling test.