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Chemicals and Materials 

Sodium hydroxide (NaOH, 97.0%, Daejung Chemicals & Metals Co., Ltd., Korea) was used 

to synthesize zeolites from kaolin (Seoul Chemical Industry, Korea). Precursor solutions of Pd 

and In were prepared using palladium(II) chloride (99%, Sigma-Aldrich Inc., USA) and 

indium(III) chloride (98%, Sigma-Aldrich Inc., USA), respectively. The other Pd-In bimetallic 

catalysts supported by different materials were prepared using silicon dioxide (~99%, 0.5–10 

μm, Sigma-Aldrich Inc., USA), aluminum oxide (99.5%, ≤10 μm, Sigma-Aldrich Inc., USA), 

and zeolite A-4 (200 mesh, Wako Pure Chemicals Corp., Japan). Pd-In bimetallic catalysts 

were activated using 10 mM sodium borohydride (98%, Sigma-Aldrich Inc., USA) before the 

reaction.

Potassium nitrate (99.0%, Duksan Pure Chemical Co., Korea), potassium nitrite (99.0%, 

Sigma-Aldrich Inc., USA), and ammonium chloride (98.5%, Shinyo Pure Chemicals Co., 

Japan) were used to prepare the stock solutions of nitrate, nitrite, and ammonia, respectively. 

Calcium chloride dihydrate (99.0%, Junsei Chemical Co., Ltd., Japan), sodium chloride 

(99.0%, Samchun Pure Chemicals Co., Korea), and sodium sulfate (99.0%, Showa Chemical 

Industry Co., Japan) were used for standard solutions for ion chromatography (IC). Sodium 

bicarbonate (99.0%, Samchun Pure Chemicals Co., Korea), sodium carbonate (99.95%, Sigma-

Aldrich Inc., USA), sulfuric acid (60%, Daejung Chemicals & Metals Co., Ltd., Korea), and 

nitric acid/dipicolinic acid (Sigma-Aldrich Inc., USA) were used to prepare eluents for IC 

operation. 

Characterization of ZK70 and Pd-In/ZK70

The specific surface areas of ZK70 and Pd-In/ZK70 were measured by nitrogen adsorption and 

desorption at −196 ℃ with a Brunauer–Emmett–Teller surface analyzer (Tristar II, 

Micrometrics, USA). X-ray diffraction (XRD) analysis was performed to identify the mineral 
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phase using an automated diffractometer with Cu-KN radiation (DE/D8 advance, Bruker, 

Germany). The samples were scanned with 2θ in the range 10°–50° with a scan speed of 1° 

min⁻1.

The samples for surface characterization of Pd-In/ZK70 after reduction of NO3
−

GW 

(reaction time = 180 min) were prepared as follows: after finishing the reaction, stirring and H2 

and CO2 supplies were stopped and Ar purging was started to prevent a possible oxidation of 

the catalyst by air. The solution was then sealed and transferred to the anaerobic chamber to 

minimize the surface oxidation of the catalyst. The used Pd-In/ZK70 catalyst was vacuum-

filtered using a mixed cellulose ester membrane filter (0.2 μm, Advantech, Japan). The 

collected catalyst was rinsed with DDIW, 50% deaerated ethanol, and 100% deaerated ethanol 

sequentially. All washed samples were dispersed in deaerated ethanol to prevent further 

oxidation before the analyses. 

The morphological characteristics of kaolin, ZK70, and Pd-In/ZK70 were investigated 

using field emission scanning electron microscopy (FE-SEM) (SU8010, Hitachi, Japan), field-

emission transmission electron microscopy (FE-TEM) (JEM-F200, JEOL Ltd, Japan), and Cs-

TEM ( JEM-ARM200F, JEOL Ltd, Japan) equipped with energy-dispersive X-ray 

spectroscopy (EDX). The elemental dispersion of Pd, In, Si, Al, and O on the surface of ZK70 

and Pd-In/Zk70 was identified by FE-TEM/EDX. The suspensions of ZK70, fresh Pd-In/ZK70, 

and used Pd-In/ZK70 were diluted with deaerated ethanol and sonicated for 10 min to 

completely disperse the particles. The droplets of the diluted samples were put on a 200 mesh 

copper TEM grid and dried in the anaerobic chamber. Samples were analyzed by FE-TEM at 

200 kV.

The oxidation states of Pd and In on the surface of 1.25% Pd-0.25% In/ZK70 before 

activation, after activation with NaBH4, and after reduction of NO3
− in groundwater were 

investigated by XPS (K-Alpha, Thermo Scientific, USA) with Al K X-ray (1486.7 eV) 
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radiation at a source power of 75 W. The C 1s peak at 285 eV was used as a reference. The 

narrow-scan spectra in the ranges 460–439 and 350–330 eV were obtained to identify the 

oxidation states of In and Pd species on the Pd-In/ZK70 surface, respectively.

ZK70, 1.25% Pd/ZK70, 0.25% In/ZK70, and 1.25% Pd-0.25% In/ZK70 were 

introduced into a conventional flow system for the TPR analysis (AutoChemII2920, 

Micromeritics Instrument Corp., USA) and examined in the temperature range of 50–1000 °C 

with ramping of 20°C /min. A stream of 10% H2/Ar was passed through the system bed at a 

flow rate of 10 cm3/min.

The cumulative H2 uptake, metal dispersion, metallic surface area, active particle 

diameter, cubic crystallite size, and active metal sites of 1.25% Pd/ZK70 and 1.25% Pd-0.25% 

In/ZK70 were obtained by H2 pulse chemisorption using an AutoChemII2920 (Micromeritics 

Instrument Corp., USA). X% Pd/ZK70 and X% Pd-X% In/ZK70 were outgassed under 

vacuum, followed by reduction under the flow of 10% H2/Ar for 2 h at 350 °C, followed by 

flushing with Ar for 1 h and cooling to 30 ºC. The pulse chemisorption test was conducted at 

30 °C by pulsing the 10% H2/Ar. 
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Figure S1. FE-SEM images of (a, a1, and a2) kaolin, (b, b1, and b2) ZK70, and (c, c1, and c2) 

1.25 wt% Pd-0.25 wt% In/ZK70.
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Figure S2. FE-TEM/EDS results of (a) ZK70 and (b) 1.25 wt% Pd-0.25 w.% In/ZK70 after 

activation; EDS electron mapping of (a1 and b1) Pd, (a2 and b2) In, (a3 and b3) Al, (a4 and 

b4) Si, and (a5 and b5) O. 
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Figure S3. (a) The effect of Pd loading on NO3⁻aq reduction by X wt.% Pd-0.5 wt% In/ZK70 

(X= 0.5, 0.75, 1.0, 1.25, 1.5). (b) The effect of In loading on NO3⁻ reduction by 1.25 wt% Pd-

X wt% In/ZK70 (X = 0.05, 0.15, 0.25, 0.5, 0.75).
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Figure S4. (a) NO3⁻aq removal, N2 selectivity, rate constant (k), and Pd normalized rate 

constant (k’’) of X wt% Pd-0.5 wt% In/ZK70 (X= 0.5, 0.75, 1.0, 1.25, 1.5). (b) NO3⁻aq removal, 

N2 selectivity, rate constant (k), and In normalized rate constant (k’) of 1.25 wt% Pd-X wt% 

In/ZK70 (X = 0.05, 0.15, 0.25, 0.5, 0.75).
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Figure S5. (a) The concentrations of NO3⁻aq, NO2⁻, and NH4
+ as a function of reaction time 

during the catalytic reduction of NO3⁻aq
 by Pd-In/ZK70 (1.25 g/L, Pd = 1.25 wt%, In = 0.25 

wt%) catalysts with only H2, only CO2, and both H2 and CO2, and without both H2 and CO2; 

H2 flow rate = 45 cm3/min, CO2 flow rate = 40 cm3/min. Reaction time was 90 min. (b) The 

concentrations of NO3⁻aq, NO2⁻, and NH4
+ as a function of reaction time during the catalytic 

reduction of NO3⁻ on only ZK70, Pd/ZK70 (Pd = 1.25 wt%), In/ZK70 (In = 0.25 wt%) and Pd-

In/ZK70 (Pd = 1.25 wt%, In = 0.25 wt%). Catalyst loading: 1.25 g/L. 
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Figure S6. (a) The removal kinetics of NO2⁻ by 1.25 wt% Pd/ZK70 and 1.25 wt% Pd-0.25 

wt% In/ZK70, (b) NO2⁻ removal and byproduct selectivity of 1.25 wt% Pd/ZK70 and 1.25 wt% 

Pd-0.25 wt% In/ZK70.
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Figure S7. XRD spectra of Pd-In/ZK70 before reaction, and after reaction in groundwater (Pd 

= 1.25 wt%, In = 0.25 wt%).
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Figure S8. TEM images of Pd-In/ZK70 after reaction in real groundwater (Pd = 1.25 wt%, In 

= 0.25 wt%).



Supplementary data

Figure S9. Survey scan of XPS for the sample of 1.25 wt% Pd-0.25 wt% In/ZK70 before and 

after reaction of NO3⁻GW reduction.
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Figure S10. (a) Kinetics of NO3
- reduction by 0.25g of 1.25 wt% Pd- 0.25 wt% In/ZK70 during 

five recycling test in groundwater without regeneration and reactivation process. (b) N2 

selectivity and NO3
- removal by 0.25g of 1.25 wt.% Pd- 0.25 wt.% In/ZK70 on repeated five 

recycling test.


