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Table S1. Search terms used to query Web of Science, by core composition. All searches were 
performed during July 2019. Filters were set to include documents of the type “Article” 
published as early as 2000 in the English language. “TS” indicates that terms were searched for 
in the title, abstract, and keywords of papers.

ENM core composition Search term

Cu/CuO TS=((nano* AND (Cu OR *CuO OR 
*copper)) AND ((mechanism$ OR mode of 
OR pathway) AND (*microb* OR *toxic* 
OR *bacteri*)))

TiO2 TS=((nano* AND (*TiO2 OR *titanium 
dioxide)) AND ((mechanism$ OR mode of 
OR pathway) AND (*microb* OR *toxic* 
OR *bacteri*)))

Ag TS=((nano* AND (Ag OR *silver)) AND 
((mechanism$ OR mode of OR pathway) 
AND (*microb* OR *toxic* OR *bacteri*)))

ZnO TS=((nano* AND (*ZnO OR *zinc)) AND 
((mechanism$ OR mode of OR pathway) 
AND (*microb* OR *toxic* OR *bacteri*)))
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Table S2. Full list of study design and conclusion variables within each category (see Table 2 of the main text). The “Variable as 
Statement” column gives the statement that must apply to a study for the value of the variable in question to be recorded as “positive” 
for that study. Studies to which this statement does not apply are recorded as “negative” for that variable.

 Variable 
Category Category Notes Variable Name Variable as Statement

Study Design 
Variables ENM size dry size, as measured by 

TEM/SEM <10nm The ENMs used were smaller than 10nm in their smallest 
dimension, as measured by TEM or SEM

10-20nm The ENMs used were between 10 and 20nm in their smallest 
dimension, as measured by TEM or SEM

20-30nm The ENMs used were between 20 and 30nm in their smallest 
dimension, as measured by TEM or SEM

30-40nm The ENMs used were between 30 and 40nm in their smallest 
dimension, as measured by TEM or SEM

40-50nm The ENMs used were between 40 and 50nm in their smallest 
dimension, as measured by TEM or SEM

50-100nm The ENMs used were between 50 and 100nm in their 
smallest dimension, as measured by TEM or SEM

Compare to >100nm
ENMs were compared to materials of particle size larger than 
100nm in their smallest dimension, as measured by TEM or 

SEM

Compare multiple ENMs of multiple sizes were compared in mechanism-
targeted experiments

Unspecified The size of ENMs was not specified

Surface coating applies only to colloidal 
ENMs Capped The ENMs used were coated in a nonmetallic capping or 

reducing agent

Uncapped The ENMs used were (reported to be) uncoated with any 
nonmetallic capping or reducing agent

Compare Coated and uncoated ENMs were compared

Unspecified No comment was given on the presence or absence of 
capping or reducing agents

Tox control
The antibacterial activity of the capping or reducing agent(s) 

alone (without ENMs) was assessed during toxicity 
assessment

Multiple capping agents Multiple capping or reducing agents were compared in 
mechanism-targeted experiments
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Surface charge
measured by zeta 

potential, in exposure 
medium

Positive ENMs had a positive surface charge in the exposure media 
used for mechanistic studies

Negative ENMs had a negative surface charge in the exposure media 
used for mechanistic studies

Compare multiple ENMs with different surface charges were compared in 
mechanistic studies

Unspecified The surface charge of ENMs was not specified
Mode of 
delivery

colloidal or immobilized 
ENMs Colloidal ENMs were colloidal (suspended in liquid)

Immobilized ENMs were immobilized (embedded in a matrix or on a 
membrane)

Compare multiple Colloidal and immobilized ENMs were compared in 
mechanistic studies

Unspecified The mode of delivery of ENMs was not specified
Bacterium Gram 

type Gram positive The bacterium used for mechanistic studies was a Gram 
positive bacterium

Gram negative The bacterium used for mechanistic studies was a Gram 
negative bacterium

Both Both Gram positive and Gram negative bacteria were used 
for mechanistic studies

Not specified
The bacterium used for mechanistic studies was not specified 

(or the study was done on a diverse community of many 
bacteria)

Characterization SEM/TEM SEM or TEM was used to characterize the ENMs for this study

DLS DLS was used to characterize the ENMs for this study

Zeta potential The zeta potential of ENMs was characterized in this study

XRD XRD was used to characterize the ENMs for this study

BET BET was used to characterize the ENMs for this study

AFM AFM was used to characterize the ENMs for this study

XPS XPS was used to characterize the ENMs for this study

UV-Vis UV-Visible spectroscopy was used to characterize the ENMs 
for this study

FTIR FTIR was used to characterize the ENMs for this study
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ICP or AAS ICP-MS (or -OES, -AES) or AAS was used to characterize the 
ENMs for this study

EDS EDS was used to characterize the ENMs for this study

PL Spectroscopy PL spectroscopy was used to characterize the ENMs for this 
study

Toxicity assay

the experimental 
method(s) used to assess 

the magnitude of 
antibacterial activity (not 

the mechanism)

CFU count/plating A CFU count/plating assay was used to characterize the 
magnitude of antibacterial activity

KB/Disk diffusion The Kirby Bauer/disk diffusion assay was used to characterize 
the magnitude of antibacterial activity

Broth 
microdilution/growth 

inhibition in liquid media

The broth microdilution assay was used to characterize the 
magnitude of antibacterial activity

Membrane A membrane damage assay was used to characterize the 
magnitude of antibacterial activity

Other Another assay was used to characterize the magnitude of 
antibacterial activity

Multiple concentrations The antibacterial activity of ENMs was assessed at multiple 
concentrations

Time points The antibacterial activity of ENMs was assessed at multiple 
time points

Lighting for mechanism-targeted 
experiment(s) UV Mechanism-targeted experiments were conducted under UV 

illumination

Visible Mechanism-targeted experiments were conducted under 
visible light

Dark Mechanism-targeted experiments were conducted in 
darkness

Compare multiple Multiple lighting conditions were compared in mechanism-
targeted experiments

Unspecified Lighting conditions were not specified

Control A negative control (without ENMs) was used in the 
mechanism-targeted experiment with the same illumination

ENM 
aggregation

hydrodynamic size, 
measured by DLS, applies 

only to colloidal ENMs
<50nm The hydrodynamic size of ENMs was less than 50nm
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50-100nm The hydrodynamic size of ENMs was between 50 and 100nm

100-200nm The hydrodynamic size of ENMs was between 100 and 
200nm

200-500nm The hydrodynamic size of ENMs was between 200 and 
500nm

>500nm The hydrodynamic size of ENMs was greater than 500nm

Compare multiple ENMs of multiple hydrodynamic sizes were compared in 
mechanism-targeted experiments

Unspecified The hydrodynamic size of ENMs was not specified

Mechanism-
targeted 
methods

[name of Group, 
Approach, or 

Technique], [name of 
mechanism question]

This Group/Approach/Technique was applied to answering 
this mechanism question.

Conclusion 
Variables Ion Metal ions released from particles into the exposure medium 

are necessary for antibacterial activity

Contact Close association between the ENM and cell is necessary for 
antibacterial activity

Internalization Internalization of intact ENMs across an intact cell membrane 
contributes significantly to antibacterial activity

ROS
The production or accumulation of ROS, intracellularly or 
extracellularly, contributes significantly to antibacterial 

activity
Photoactivity The presence of light is essential for antibacterial activity

Membrane Damage to the cell wall or membrane contributes 
significantly to antibacterial activity

DNA Damage to bacterial DNA contributes significantly to 
antibacterial activity

Protein
The binding or inactivation of intra- or extracellular proteins 

by ENMs or their dissolved components contributes 
significantly to antibacterial activity
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Table S3. Full list of mechanism-targeted experimental Techniques, categorized according to Group and Approach as explained in 
Table 4 of the main text.

Group Approach Technique Endpoint Type of Analysis Used For References

1 1 1 NOM (e.g. humic acid) addition difference in toxicity (dependent on toxicity assay) ion [1, 2]

  2

Insoluble salt-forming agent 
addition, including 
orthophosphate, sulfide, sodium 
thiosulfate, sodium chloride difference in toxicity (dependent on toxicity assay) ion, contact [2-5]

  3

Chelator addition, including NAC, 
EDTA, bathocuproine, 
neocuproine difference in toxicity (dependent on toxicity assay) ion, contact [3, 6-14]

  4
Use NP concentration below toxic 
ion release threshold difference in toxicity (dependent on toxicity assay) ROS [15]

 2 5
Compare colloidal to immobilized 
NPs difference in toxicity (dependent on toxicity assay)

ion, contact, 
internalization [2, 16-18]

  6 Compare to NP-free filtrate difference in toxicity (dependent on toxicity assay) ion, contact [1, 4, 19-27]

  7 Membrane barrier difference in toxicity (dependent on toxicity assay) ion, contact [28-30]

  8

Induce aggregation, including 
extracellular polymeric substance 
(EPS) addition difference in toxicity (dependent on toxicity assay) ion, contact [1, 30-32]

  9
Compare to inert NPs of same 
size and morphology difference in toxicity (dependent on toxicity assay) contact [33-37]

  10
Compare toxicity in  aerobic and 
anaerobic environment difference in toxicity (dependent on toxicity assay) ion, contact, ROS [3, 38, 39]

 3 11 Cysteine (e.g. NAC) addition difference in toxicity (dependent on toxicity assay) ROS [21, 24, 35, 39-43]

  12 Ascorbic acid addition difference in toxicity (dependent on toxicity assay) ROS [41, 44, 45]

  13 Methanol addition difference in toxicity (dependent on toxicity assay) ROS [46, 47]

  14 Vitamin E addition difference in toxicity (dependent on toxicity assay) ROS [28]

  15 Mannitol addition difference in toxicity (dependent on toxicity assay) ROS [28]

  16 GSH addition difference in toxicity (dependent on toxicity assay) ROS [5, 28, 44]

  17 SOD addition difference in toxicity (dependent on toxicity assay) ROS [10, 24, 43, 46]

  18 CAT addition difference in toxicity (dependent on toxicity assay) ROS [10, 43, 48, 49]

  19 DMSO addition difference in toxicity (dependent on toxicity assay) ROS [43]
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  20 t-butanol addition difference in toxicity (dependent on toxicity assay) ROS [48]

  21 Ammonium oxalate addition difference in toxicity (dependent on toxicity assay) ROS [48]

  22 BQ addition difference in toxicity (dependent on toxicity assay) ROS [48, 50]

  23 p-benzoic acid addition difference in toxicity (dependent on toxicity assay) ROS [51]

  24 IPA addition difference in toxicity (dependent on toxicity assay) ROS [50]

  25
EDTA-Fe

difference in toxicity (dependent on toxicity assay) ROS [52]

  26
TEMPOL

difference in toxicity (dependent on toxicity assay) ROS [52]

 4 27 NP pre-irradiation difference in toxicity (dependent on toxicity assay) photoactivity [53-56]

  28
Compare toxicity in light vs dark 
conditions difference in toxicity (dependent on toxicity assay) photoactivity [13, 46, 57-81]

 5 29 Add osmotic support difference in toxicity (dependent on toxicity assay) membrane [82]

 6 30
Soluble salt (e.g. AgNO3, CuSO4, 
ZnCl2) difference in toxicity (dependent on toxicity assay) ion, contact

[6-8, 13, 20, 22, 28-31, 34-
36, 52, 54, 55, 59-61, 71, 77, 
83-130]

  31 Metal plate difference in toxicity (dependent on toxicity assay) ion, contact [2, 16]

  32 H2O2 difference in toxicity (dependent on toxicity assay) ROS [13, 21, 30, 125]

  33 Detergent/bacteriolytic agent difference in toxicity (dependent on toxicity assay) membrane [97, 131-133]

2 7 34
Recombinent bioluminescent 
reporter strain

various (incl. 
intracellular ROS 
species, bioavailable 
metal, DNA damage, 
membrane damage) chemiluminometric

ion, ROS, membrane, 
DNA, protein

[7, 10, 27, 40, 72, 83, 90, 93, 
94, 115, 124, 134-137]

  35
Single-gene deletion ("knockout") 
strain difference in toxicity (dependent on toxicity assay) ion, ROS, DNA [93, 115, 137, 138]

 8 36 Transcriptome analysis

quantity of RNA 
produced relative to 
control (indicates up- 
and down-regulation 
of relevant genes)

various, usually microarray or 
high-throughput sequencing

ion, contact, ROS, 
membrane, DNA, 
protein

[21, 26, 36, 40, 72, 75, 99, 
118, 123, 138-151]
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  37 Proteome analysis

quantity of protein 
produced relative to 
control (indicates up- 
and down-regulation 
of relevant genes)

various, usually mass 
spectrometry

ion, contact, ROS, 
membrane, DNA, 
protein

[11, 44, 71, 97, 101, 104, 
128, 145, 147, 148, 152-
155]

 9 38 NBT assay

Usually superoxide 
anion levels; 
inhibition of stain is 
also used as a 
measure for SOD 
activity colorimetric protein [156]

  39 Ammonium molybdate assay CAT activity colorimetric ROS, protein [6, 11, 24, 44, 133, 156]

  40 NADPH/NaN3 assay GPX activity colorimetric ROS [11]

  41 CDNB/GSH assay GST activity colorimetric ROS, protein [11, 156]

  42
Peroxidase activity assays, 
including pyrogallol and guaiacol Peroxidase activity colorimetric or fluorometric ROS [44, 157]

  43 DTNB assay GR activity colorimetric ROS, protein [13, 24, 158]

  44
NADH assay (with INT or 
resorufin)

Dehydrogenase 
activity colorimetric or fluorometric protein, ROS

[11, 107, 117, 126, 152, 156, 
158-161]

  45 Lipase activity (Randox) Lipase activity colorimetric protein [107, 156]

  46 ONPG assay GAL activity colorimetric protein [52, 162]

  47 Phenol red urease assay Urease activity colorimetric protein [163]

  48 Acetylene reduction assay Nitrogenase activity GC protein [151]

  49 P-NPP assay
Alkaline phosphatase 
activity colorimetric protein [14]

3 10 50
XAS analysis of metal in cell mass 
or supernatant

Local geometric and 
electronic structure 
of metal atoms EXAFS and/or XANES

ion, contact, 
internalization, ROS [91, 164-167]

  51 XPS analysis of NP/cell interface
Oxidation state of 
metal XPS

photoactivity, contact, 
ROS [63, 73]

  52 Speciation modeling
Metal speciation in 
supernatant in silico ion, contact [167]

 11 53

FTIR of cellular fraction or 
extracellular polymeric 
substances (EPS)

Chemical changes in 
cellular components FTIR

contact, membrane, 
protein, DNA

[47, 48, 63, 71, 82, 84, 116, 
166, 168-174]

  54
Raman spectroscopy of cellular 
fraction

Chemical changes in 
cellular components Raman spectroscopy protein, DNA [25, 63, 175]

  55 Peptidoglycan analysis
Chemical changes in 
cell wall components GC/MS and CD spectroscopy membrane [176]
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  56 TBA/MDA assay
Degree of lipid 
peroxidation colorimetric or fluorometric ROS, membrane

[5, 21, 24, 43, 52, 58, 66, 83, 
111, 156, 172, 177-186]

  57 DNPH assay

Protein carbonyl 
content (indicates 
protein oxidation) colorimetric ROS [155, 177]

  58 RNA degradation assay

Changes in RNA 
lengths relative to 
control gel electrophoresis protein [187]

  59 AOPP assay

AOPP formation 
(indicates protein 
oxidation) UV-Vis protein, ROS [182, 188]

4 12 60

Reversability study (i.e. recovery 
of cell growth after removal of 
NPs from system) for cell-
associated metal

Growth rate relative 
to control (dependent on toxicity assay) ion, contact [122]

  61

Metal concentration in cellular 
fraction, including sucrose 
gradient centrifugation assay

Quantity of metal 
associated with cells ICP-MS

ion, contact, 
internalization

[96, 98, 128, 151, 164, 189-
192]

  62
Metal concentration in cell-free 
filtrate

Quantity of metal 
remaining in 
suspension ICP-MS contact, internalization [193]

  63 NPs suspended in supernatant

Quantity of colloidal 
metal removed from 
suspension 
compared to pre-cell 
exposure UV-Vis contact [29]

 13 64 SEM
Qualitative attributes 
of cell/NP interaction Image of cell exterior contact, membrane

[5, 25, 30, 32, 42, 43, 48, 50, 
62, 70, 82, 107, 113, 129, 
151, 161, 181, 183, 184, 
187, 193-223]

  65
SEM with elemental mapping 
(EDX or synchrotron XFM)

Qualitative attributes 
of cell/NP interaction

Image of cell exterior with 
elemental mapping contact, membrane [126, 127, 171, 224-228]

  66 AFM
Qualitative attributes 
of cell/NP interaction Image of cell surface contact, membrane

[14, 17, 130, 136, 170, 173, 
197, 229-231]
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 14 67 TEM
Qualitative attributes 
of cell/NP interaction Image of cell interior

membrane, contact, 
internalization, DNA

[12, 30, 44, 52, 61, 64, 68, 
84, 93, 113, 119, 129, 132, 
141, 150-152, 161, 165, 
168, 172, 176, 184, 212, 
232-248]

  68
TEM with elemental mapping 
(EDX or synchrotron XFM)

Qualitative attributes 
of cell/NP interaction

Image of cell interior with 
elemental mapping

contact, internalization, 
membrane

[10, 19, 47, 83, 96, 100, 104, 
150, 171, 179, 224, 226, 
227, 249-253]

 15 69 CLSM

Qualitative attributes 
of cell/NP interaction 
(for intrinsically 
fluorescent NPs) fluorescence microscopy

contact, internalization, 
membrane, DNA [80, 237, 254-257]

  70
Two-photon microscopy with ion-
specific label

Relative quantity of 
free ions within cells fluorescence microscopy

ion, contact, 
internalization [96]

  71

DLE with PI stain Association between 
NPs and dead cells 
(for NPs with DLE, 
e.g., ZnO) fluorescence microscopy contact [96]

  72

Dark-field microscopy (may be 
equipped with HSI) Relative strength of 

interactions between 
NPs and cell surfaces light microscopy contact, membrane [96, 99, 192, 258]

  73
Fluorescence microscopy with 
protein labeling

Localization of target 
proteins within cells fluorescence microscopy contact [105, 192]

  74

NP tracking with intrinsic 
fluorescence or fluorescent label 
(e.g. rhodamine B)

Localization of NPs 
within cells fluorescence microscopy contact, internalization [105, 155, 206]

  75
Light scattering method for 
particle internalization

Ratio of forward- to 
side-scattered light 
(varies with cell 
granularity) light microscopy internalization [13, 201, 241, 259]

5 16 76 ONPG hydrolysis assay GAL leakage colorimetric membrane
[45, 155, 169, 184, 195, 208, 
260]

  77 K+ and/or Mg2+ leakage
K+ and/or Mg+ in 
supernatant

AAS/AES or selective 
electrode membrane

[28, 106, 122, 129, 145, 168, 
184, 218, 245]

  78 Tetraphenylborate assay K+ in supernatant colorimetric membrane [48]

  79 TPP+ leakage TPP+ in supernatant selective electrode membrane [106]
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  80 Nucleic acid leakage
Nucleic acids in 
supernatant UV-Vis membrane

[9, 43, 45, 98, 133, 155, 169, 
194, 205, 211, 225, 240, 
255, 261-263]

  81 Sodium pyruvate assay LDH in supernatant UV-Vis membrane
[87, 104, 171, 174, 179, 191, 
256, 264-266]

  82 Lowry method
Protein in 
supernatant colorimetric membrane [45, 159, 201, 257, 260]

  83 Bradford method
Protein in 
supernatant colorimetric membrane

[48, 50, 117, 133, 156, 160, 
161, 169, 214, 218, 228, 
242, 262, 264, 267-269]

  84 Miller method
Reducing sugar in 
supernatant colorimetric membrane

[117, 126, 156, 159, 160, 
242, 262, 267-269]

  85

DNA release, including 
diphenylamine and PicoGreen 
assays DNA in supernatant fluorometric membrane [9, 32, 98, 217, 258]

  86 RNA gel electrophoresis RNA in supernatant gel electrophoresis membrane [184]

  87 P-NPP assay
Alkaline phosphatase 
in supernatant colorimetric membrane [14, 130, 264]

  88 EMA qPCR assay

DNA in cells with 
compromised 
membranes gel electrophoresis membrane [204]

 17 89 DNA ladder assay
Degree of gDNA 
fragmentation gel electrophoresis DNA, protein

[45, 52, 107, 163, 165, 177-
180, 215, 218, 265, 270]

  90 UV-Vis assay
Degree of gDNA 
fragmentation spectrophotometric DNA [188, 237]

  91 HPLC
Degree of DNA 
oxidation HPLC DNA [182, 188]

  92 Viscosity assay

Viscosity of DNA 
solution (as a metric 
for mode of 
interaction with NPs) rotational viscometer DNA [178]

 18 93

DCFH-DA (including variants such 
as CM-H2DCFDA, ab113851-
DCFDA, H2DCFDA, DCF-DA) Intracellular ROS fluorometric ROS

[5, 21, 22, 24, 32, 39, 42-44, 
62, 64, 67-69, 75-77, 83, 87, 
88, 96, 120, 128, 132, 142, 
149, 151, 156, 157, 159, 
171-174, 177, 179-183, 186, 
187, 189, 190, 192, 194-
196, 201, 206, 207, 211, 
212, 216, 225, 239, 241, 
252, 256, 257, 259, 265, 
271-275]
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  94 NBT assay

Usually superoxide 
anion levels; 
inhibition of stain is 
also used as a 
measure for SOD 
activity colorimetric ROS

[11, 24, 44, 46, 54, 98, 157, 
171, 174, 178, 225, 256, 
262, 276]

  95

Rhodamine dyes, including 
DHR6G and dihydrorhodamine 
123 Intracellular ROS fluorometric ROS [82, 181, 277, 278]

  96
Hydroxylamine assay (cells must 
be lysed) Intracellular O2- fluorometric ROS [44]

  97 Propidium iodide (PI) stain

Membrane 
permeability (enters 
cells with 
compromised 
membranes) fluorometric membrane

[9, 12, 20, 22, 32, 43, 47, 63, 
68, 77, 87, 91, 96, 108, 113, 
114, 126, 129, 138, 151, 
165, 166, 171, 173, 183, 
187, 189, 196, 199, 205, 
212, 216, 225, 241, 263, 
270, 273, 274, 279, 280]

  98 Ethidium bromide (EtBr) stain

Membrane 
permeability (enters 
cells with 
compromised 
membranes and 
stains DNA) fluorometric membrane [174]

  99 DiBAC4 stain Membrane potential fluorometric membrane [114, 126, 149]

  100

diSC3(5) assay for membrane 
potential Membrane potential fluorometric membrane [52, 97, 201, 209, 258]

  101 1-NPN
Outer membrane 
permeability fluorometric membrane [9, 106, 155, 183, 194, 211]

  102
DPH membrane fluidity assay Membrane fluidity

fluorometric membrane [132, 201, 218, 273]

  103 ANS probe Membrane potential fluorometric membrane [188]

  104 TUNEL assay Degree of apoptosis fluorometric DNA [149, 201, 216]

  105 DAPI stain Stains DNA fluorometric internalization [179, 201]

  106
Hoechst 33342

Stains DNA fluorometric internalization [189]

  107 Annexin V Degree of apoptosis fluorometric protein [44, 149, 281]

  108 CaspACE FITC-VAD-FMK stain

Intracellular caspase-
like protein (as a 
marker for 
apoptosis) fluorometric protein [149]

  109
RedoxSensor assay

Reductase activity fluorometric ROS [91, 165, 166]
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 19 110 DTNB assay for cellular GSH
Quantity of disulfide-
containing molecules colorimetric ROS, protein [13, 156, 173, 179, 181]

  111
8-oxoguanine assay for oxidative 
DNA damage Oxidative damage LC-MS/MS DNA [5]

  112 Dissolved oxygen Cell respiration colorimetric membrane, protein [106]

  113 MTT Cell respiration colorimetric protein [158]

  114
TTC reduction Dehydrogenase 

activity colorimetric protein [66, 191]

  115
Luciferin/trichloroacetic (TCA) 
assay for ATP content Cell respiration chemiluminometric protein

[1, 43, 52, 83, 97, 126, 156, 
218, 238]

  116
AMO- and HAO-specific SOUR 
measurements

Cell respiration 
(following blockage 
of one or multiple 
SOUR-relevant 
enzymes) SOUR protein [122]

  117 NAD+/NADH ratio Cell respiration colorimetric protein [5]

  118 Intracellular K+ or Ca2+

Cell respiration (as a 
reflection of 
membrane damage 
and metabolic 
disruption) flame AES protein [52, 97, 149]

  119

EPS quantification EPS production (as a 
measure of cell 
viability or metabolic 
activity) colorimetric protein [166, 191, 225]

  120

OmpA immunoblot Accumulation of 
precursor forms of 
membrane proteins immunoblot protein [97]

  121 Phag-GFP expression assay

Degree of Phag-GFP 
expression relative to 
control chemiluminometric protein [165, 166, 282]

  122

X-gal plating assay Portion of population 
expressing beta-
galactosidase relative 
to control

colony color

DNA [197]

  123

SDS-PAGE for general protein 
damage

Changes in protein 
masses compared to 
control

gel electrophoresis

protein [108]

 20 124 EPR/ESR

Quantity of ROS 
(species depends on 
spin trap used) ESR ROS

[46, 67, 71, 78, 83, 99, 148, 
151, 172, 205, 216, 275, 
283, 284]
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 21 125 Ames test
Number of mutations 
caused by material number of colonies DNA [194, 211, 285-287]

 22 126

EtBr cartwheel efflux pump 
inhibition assay

Eliminates ion efflux 
inhibition

Role of intracellular ions in 
toxicity and corresponding 
cellular defense mechanisms ions, internalization [9]

6 23 127 NP-protein interaction modeling

Number and type of 
possible interactions 
between NPs and 
target proteins in silico

contact, protein, 
membrane [288]

  128
NP/peptidoglycan interaction 
modeling

Theoretical affinity of 
NPs for 
peptidoglycan in silico contact [253]

  129
in vitro analysis of fatty acids on 
NP thin film

Chemical and 
structural changes in 
fatty acids (key 
components of 
plasma membrane) XPS membrane [70]

  130 in vitro peptidoglycan assay

Chemical changes in 
peptidoglycan (key 
component of cell 
wall) UV-Vis protein [258]

  131
in vitro resorufin β-D-
galactopyranoside assay

NP inhibition of GAL 
in vitro fluorometric protein [162]

  132 in vitro enzyme activity assay

NP inhibition of 
enzyme activity in 
vitro various, usually colorimetric protein [52, 87, 104]

  133
In vitro disulfide bond interaction 
assay

Amount of insulin 
bound to NPs gel electrophoresis protein [107]

  134 In vitro protein binding assay
Amount of GAL 
binding to NPs gel electrophoresis protein [162]

  135 In vitro protein binding assay
Amount of BSA 
bound to NPs UV-Vis protein [260]

 24 136 in vitro DNA fragmentation assay
Degree of plasmid 
fragmentation gel electrophoresis DNA [178, 189, 267]

  137 in vitro DNA interaction assay
Amount of DNA 
bound to NPs UV-Vis DNA [177]

 25 139 pyranine lipid vesicle assay

Degree of synthetic 
membrane 
permeability pH change contact [30, 49]

  140
liposome carboxyfluorescein 
assay

Degree of synthetic 
membrane 
permeability fluorometric membrane [28, 231]
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  141
Synthetic membrane surface 
pressure assay

Surface pressure on 
membrane (as a 
measure of 
mechanical stress 
created by NPs) DLS membrane [289]

  142
Three-electrode assay with 
synthetic (e.g. DOPC) membrane

Electrostatic 
attraction between 
NPs and synthetic 
membrane three-electrode system contact [219]

  143 in vitro TBA/MDA assay
Degree of lipid 
peroxidation in vitro colorimetric or fluorometric ROS [55, 111]

 26 144
e.g. fumarase A and sulfite 
reductase   protein [98]

7 27 145 ICP-MS, -OES, -AES
Concentration of ions 
in exposure media ICP-MS, -OES, -AES ion

[6, 8, 11-16, 19, 20, 34, 36, 
38, 42, 43, 51, 58, 60, 61, 
64, 71, 72, 77, 79, 82, 84, 
94-97, 99, 101, 103, 108, 
110-112, 114, 115, 120-122, 
125, 127, 128, 130, 132, 
142, 157, 164, 172-174, 
178, 189, 193, 210, 216, 
217, 226, 250, 252, 259, 
261, 278, 279, 283, 284, 
290-301]

  146 AAS
Concentration of ions 
in exposure media AAS ion

[10, 27, 29, 32, 46, 48, 54, 
91, 113, 116, 124, 135, 138, 
191, 199, 200, 205, 266, 
302, 303]

  147 HPLC  HPLC ion [23]

  148 ASV
Concentration of ions 
in exposure media  ion [304]

  149 chloride precipitation
Concentration of ions 
in exposure media colorimetric ion [41]

  150 silver/sulfide electrode
Concentration of ions 
in exposure media selective electrode ion [29, 43, 88, 277, 282]

  151 Alizarin red S (ARS)
Concentration of ions 
in exposure media colorimetric ion [9]

S16



 28 152 GSH oxidation (DTNB) ROS quantity colorimetric ROS, protein [19, 58, 174, 199, 207, 300]

  153

XTT

Superoxide quantity colorimetric ROS
[59-61, 79, 187, 194, 199, 
211, 300, 305]

  154 HE (hydroethidene) Superoxide quantity  ROS [172]

  155 Methyl orange ROS quantity  photoactivity, ROS [172, 294, 295]

  156 Methylene blue ROS quantity  photoactivity, ROS [53, 68, 69, 146, 261, 306]

  157
3’-(p-aminophenyl) fluorescein 
(APF) Hydroxyl quantity  ROS [21, 88, 146]

  158
3-(p-hydroxyphenyl) fluorescein 
(HPF)   photoactivity, ROS [47, 172]

  159 Rhodamine B   ROS [244]

  160 KI UV-Vis assay for H2O2 H2O2 quantity colorimetric ROS [278]

  161 DMSO H2O2 colorimetric assay H2O2 quantity colorimetric ROS [302]

  162 HRP horseradish peroxide assay H2O2 quantity  ROS [28]

  163 KMnO4 redox titration   ROS [46, 276]

  164 DCPIP   photoactivity, ROS [72]

  165 DPPH   ROS [228]

  166 Terepthalic acid (or Phth) Hydroxyl quantity  ROS [15, 46, 50, 276]

  167 Luminol for superoxide Superoxide quantity chemiluminometric ROS [15, 83]

  168 Luminol+ferricyanide for H2O2 H2O2 quantity chemiluminometric ROS [15]

  169
p-chlorobenzoic acid (pCBA)

  ROS [51, 59-61, 79]

  170 FFA   ROS [59-61, 79]

  171 Amplex Red H2O2 quantity colorimetric ROS [49]

  172
Singlet Oxygen Sensor Green 
(SOSG)

Singlet oxygen 
quantity fluorometric ROS [172]

  173

Pentafluorobenzenesulfonyl 
fluorescein (PFBSF)  fluorometric ROS [172]

  174
Deoxyribose

  ROS [98]

 29 175
Electrical impedence (for film-
embedded NPs) difference in toxicity (dependent on toxicity assay) contact [307]

  176

Defect sites or oxygen vacancies 
(measured by PL spectroscopy or 
XPS) difference in toxicity (dependent on toxicity assay) ROS [146, 276, 299, 308-311]

  177 Morphology difference in toxicity (dependent on toxicity assay) ions, contact
[270, 293, 300, 306, 312-
315]
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  178 Zeta potential difference in toxicity (dependent on toxicity assay) contact, membrane

[14, 41, 65, 95, 130, 135, 
136, 171, 173, 174, 190, 
252, 295]

  179 Surface coating difference in toxicity (dependent on toxicity assay) ion, contact [33, 89, 170, 316, 317]

  180
Interaction energy (calculated 
based on EDLVO theory) difference in toxicity (dependent on toxicity assay) ROS [276]

 30 181 model organism Gram type difference in toxicity (dependent on toxicity assay) contact [62, 221, 309]
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Table S4. List of abbreviations and acronyms used in Table 3 and Table S3

AOPP Advanced oxidation protein products
CAT catalase
CD Circular dichroism
CDNB 1-chloro-2,4-dinitrobenzene
CLSM confocal laser scanning microscopy
DAPI 4′,6-diamidino-2-phenylindole
DCFH-DA 2ʹ,7ʹ-Dichlorofluorescin Diacetate
DiBAC4(3) Bis-(1,3-Dibutylbarbituric Acid)Trimethine Oxonol
DiSC3(5) 3,3’-diphenylthiocarbocyanine iodide
DLE deep level emission
DMSO dimethyl sulfoxide
DNPH 2,4-dinitrophenylhydrazine
DPH Diphenylhexyltriene
DTNB 5,5'-dithiobis-(2-nitrobenzoic acid)
EDTA Ethylenediaminetetraacetic acid
EMA ethidium monoazide
EPR electron paramagnetic resonance spectroscopy
EPS extracellular polymeric substance
ESR electron spin resonance spectroscopy
FFA fufuryl alcohol
GAL Beta-galactosidase
GC gas chromatography
GFP green fluorescent protein
GPX Glutathione peroxidase
GR glutathione reductase
GSH glutathione
GST glutathione-s-transferase
H-NS histone-like nucleoid structuring proteins
INT Iodonitrotetrazolium
IPA isopropanol
LDH lactate dehydrogenase
MDA Malondialdehyde
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
Na2S2O3 sodium thiosulfate
NAC N-acetyl L-cysteine
NaCl sodium chloride
NADH 1,4-Dihydronicotinamide adenine dinucleotide
NADPH beta-Nicotinamide Adenine Dinucleotide Phosphate, Reduced
NBT Nitro blue tetrazolium
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NOM natural organic matter
ONPG o-nitrophenyl-beta-D-galactopyranoside
P-NPP para-nitrophenol phosphate
Pyranine 8-hydroxy-1,3,6-pyrene-trisulfonate
qPCR quantitative polymerase chain reaction
SDS-
PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis
SOD superoxide dismutase
SOUR specific oxygen uptake rate
TBA Thiobarbituric acid

TEMPOL 4-Hydroxy-TEMPO or 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-
oxyl

TPP tetraphenylphosphonium
TTC 2,3,5-triphenyltetrazoilum chloride
TUNEL terminal deoxynucleotidyl transferase dUTP nick end labeling

XAS
X-ray absorption spectroscopy, including XANES (X-ray 
absorption near edge structure) and/or EXAFS (extended X-ray 
absorption fine structure)

XTT 2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-
Carboxanilide
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Table S5. Summary of advantages and limitations of specific method Groups, Approaches, and 
Techniques that have been proposed in the literature. When advantages and limitations were 
reported for multiple sets of methods containing a particular Technique, this Technique is listed 
multiple times. For definitions of specific Groups, Approaches, and Techniques, see Table 4 in 
the main text.

Group Approach Technique Documented Advantages and/or Limitations

2 10
Dissolution may occur through non-oxidative means, so anaerobic 
conditions may not eliminate antibacterial activity from dissolved 
ions [318].

3 12, 16
Enzymes that utilize GSH and ascorbate are not present in certain 
bacterial species including E. coli, so these compounds are not 
useful as “diagnostic antioxidants” [319]. 

1

6 30

The kinetics of ion leaching from ENMs are not captured in pulse 
ion addition [99]. Exposure media: certain ligands may generate 
misleading results by preferentially decreasing the bioavailability 
and antibacterial activity of dissolved ions [3]. Dose of soluble salt: 
must deliver the dose that the bacteria actually receive on ENM 
exposure in the relevant study conditions, rather than simply 
matching the mass of salt to the mass of ENMs [318]. If salt 
dosing is based on ion leaching experiments, the conditions of 
these assays may also affect results (see Group 7). Antibacterial 
activity of the counter-ion in soluble salt experiments [28]: can be 
mitigated by removing the anion from the system or controlling for 
its toxic effect.

7 34

Recommended as a screening step for multiple mechanisms due 
to their relative simplicity [320]. Metal-sensing biosensors may be 
the most accurate way to assess the “true bioavailable content” 
[321]. Biosensors are not as precise as analytical methods for 
assessing cell-associated metal, and the “bioavailable” fraction 
excludes complexes which have been shown to exert toxic effects 
in bacteria [115].

2

8 36, 37

Ability to detect “broad coordinated trends” [322], particularly 
useful for providing more detailed resolution of "cell effects" 
aspects of antibacterial activity mechanism (e.g., membrane and 
DNA damage) [104, 124]. High-throughput methods are reliant on 
precise and accurate understanding of the function of genes in the 
model organism, including reference genes whose expression is 
not expected to change during the study [36]. Since a complete 
picture of gene function and bacteria physiology is not 
straightforward to achieve, misinterpretations may lead to 
erroneous conclusions, similar to those revealed about the role of 
ROS in the action of several antibiotics [319]. Transcriptome 
analysis may require the establishment of a “normal” or 
“background” cell phenotype, which can vary between studies 
[323]. Protein expression varies depending on stage of cell cycle, 
which introduces added variability into proteome analysis results 
[323].
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(All Group 3)

Ability to connect the binary presence or absence of a mechanistic 
phenomenon to either its origin (i.e. ions or particles) or the 
chemical changes responsible. Most Group 3 methods are readily 
conducted at multiple time points to study the kinetics of cellular 
degradation [324].

10 50
XPS and XAS of cellular metal can help establish whether 
intracellular metal represented in-tact ENMs or re-oxidized ions 
[91, 165, 166] .

3

11 53 FTIR promoted as a means to show specific chemical changes 
that take place during membrane and protein damage [324]. 

12 61

Metal partitioning studies are the only quantitative means to 
assess cell-associated metal, but contain no information about 
ENM localization or whether the metal in question represents 
particles or dissolved ions [325].

13, 14 64, 65, 67, 
68

Protocols to minimize TEM and SEM artefacts are outlined in 
[326]. Potential for artefacts with TEM and SEM [327], including 
dark spots from osmium tetroxide residue that may be mistaken 
for ENMs [16, 326], as well as less readily identifiable artefacts 
that arise from the reaction of ENMs with fixation or staining 
agents [326]. TEM is known to induce "slight membrane damage" 
during sample preparation [166]. Lack of z-resolution in TEM may 
make it unsuitable for studying internalization [36]. ENMs may 
detach from membranes during sample preparation, generating 
false negatives in investigations of contact-mediated antibacterial 
activity mechanisms [96].

14 66

AFM is adept at detailed study of cell surfaces and their 
mechanical properties [324], for example, through calculation of 
surface roughness and force-distance curves and the use of 
chemical force mapping [328]. Some have touted AFM as a 
means to move beyond simple binary designations of cell-ENM 
interactions (e.g., “morphology change” and “membrane damage”) 
and towards a more complex understanding of the mechanical 
changes that occur in the cell as a result of ENM exposure [329].

4

15
 (All 

Approach 
15)

High-throughput assays using fluorescence or light-scattering 
involve no fixation procedure and may help discern between ENM 
internalization and adsorption to the outer cell surface at the “bulk” 
level [325, 330]. These methods also enable the correlation of 
internalization rate with antibacterial activity in order to establish 
whether NP internalization is actually important [96, 259]. Lower 
resolution of high-throughput methods leave them powerless to 
discern ENM localization in detail, and they must be coupled with 
ICP-MS or other analytical method to provide quantitative 
information [325]. Light-scattering methods were adapted from 
eukaryotic cells and are comparatively less well-tested in 
prokaryotes [13].
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(All Group 5)

 

The majority of methods are fluorescent probes which, while 
commonly used, are not recommended as the sole means of 
gauging ROS accumulation; ESR/EPR (Approach 20, Technique 
134) has been proposed as an alternative [331].

16 81

Purportedly not suitable for ENMs that bind proteins or produce 
ROS [332], which potentially includes all the ENM classes 
reviewed here, since they may inhibit the enzymatic conversion by 
LDH. Further ambiguities are created if the material absorbs at the 
necessary wavelength, which may include nAg [333]. 

(All 
Approach 

18)

Intracellular probes may penetrate cells to differing degrees 
depending on membrane permeability [132], may be actively 
excreted by bacterial pmf-dependent pumps [319], and may 
artificially appear to fluoresce more due to the morphological 
changes that take place in bacteria under stress [319]. 

93

DCFH-DA may be subject to autocatalytic degradation [323], and 
different preparation protocols have been shown to yield different 
results depending on the time at which the probe is added, the 
incubation time, and the predominant species [334]. 

93, 94, 95

Dyes which operate via a radical intermediate, including 
fluorescein and rhodamine dyes, NBT, and lucigenin, may be 
sensitive to redox-cycling mechanisms in the presence of oxygen 
that artificially amplify the fluorescence signal [319, 331, 335]. 

18

97, 105, 
106

The PI, DAPI, and Hoechst stains are subject to background 
signal from ENMs with red or blue fluorescence [333]. 

5

21 125

The Ames reverse mutation test, a staple of the genotoxicity 
testing toolkit, is shown by multiple sources to be inappropriate for 
studies of DNA damage in ENMs due to its tendency to cause 
premature negative conclusions. Reasoning ranges from the high 
antibacterial activity of ENMs and their tendency to cause large-
scale chromosomal damage as opposed to point mutations [194, 
336] to the potentially limited uptake of ENMs into the cytoplasm 
[337] and the aggregation and lack of electrostatic attraction 
between ENMs and bacteria in the standard test medium [287].

7 27
 (All 

Approach 
27)

For ion release studies, the extent of dissolution depends heavily 
on media composition [23, 338, 339] and presence or absence of 
cells [115, 339]. Important variables to control for in exposure 
media include pH, ionic strength, NOM, and oxygen content [340]. 
Dissolution often takes place at the nano-bio interface, and 
specific proteins found in bacteria have been found to mediate 
oxidative dissolution while others do not, an example of complex 
dissolution processes which are not captured in acellular 
dissolution assays [341]. Measuring the concentration of dissolved 
ions does not account for the fraction of ions that are bioavailable, 
nor does it establish conclusively that the ions actually contribute 
to antibacterial activity [342]. 
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28
 (All 

Approach 
28)

Extracellular ROS measurements were found to be affected by 
pyruvate, a common ingredient in cell media that acts as an ROS 
scavenger [343]. Tetrazolium derivatives may be adsorbed to 
ENMs and lose activity [333].
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Table S6. Mean and standard deviation of bootstrapped Consistency Scores, disaggregated by core composition. The number of 
studies in each set is also listed in the “n” columns.

Ag Cu CuO TiO2 ZnO
Question Group Approach Technique

Median StDev n Median StDev n Median StDev n Median StDev n Median StDev n

(all)   0.143 0.050 55 0.163 0.117 9 0.122 0.078 19 0.500 0.000 0 0.055 0.037 31

1   0.107 0.062 27 0.280 0.171 3 0.100 0.072 12 0.500 0.000 0 0.078 0.052 14

1 1  0.168 0.120 5 0.500 0.000 2 0.500 0.000 2 0.000 0.000 0 0.500 0.000 1

1 1 3 0.275 0.179 3 0.000 0.000 0 0.186 0.161 2 0.000 0.000 0 0.208 0.154 2

1 2  0.218 0.124 6 0.000 0.000 0 0.223 0.151 2 0.000 0.000 0 0.229 0.143 2

1 2 6 0.132 0.070 21 0.262 0.251 1 0.146 0.097 12 0.500 0.000 0 0.074 0.061 12

1 6  0.107 0.070 21 0.243 0.251 1 0.167 0.084 12 0.500 0.000 0 0.083 0.056 12

1 6 30 0.128 0.069 21 0.213 0.248 1 0.155 0.103 12 0.500 0.000 0 0.083 0.057 12

2   0.313 0.113 9 0.500 0.000 0 0.500 0.000 2 0.500 0.000 0 0.173 0.116 3

2 7  0.386 0.109 7 0.000 0.000 0 0.500 0.000 2 0.500 0.000 0 0.270 0.179 3

2 7 34 0.357 0.125 6 0.000 0.000 0 0.500 0.000 2 0.500 0.000 0 0.270 0.186 3

4   0.358 0.166 2 0.266 0.153 2 0.299 0.164 1 0.000 0.000 0 0.500 0.000 0

4 12  0.342 0.167 2 0.269 0.155 2 0.279 0.158 1 0.000 0.000 0 0.500 0.000 0

7   0.146 0.066 34 0.190 0.116 6 0.186 0.108 10 0.500 0.000 0 0.081 0.065 24

7 27  0.131 0.069 33 0.197 0.124 6 0.167 0.097 10 0.500 0.000 0 0.089 0.057 24

7 27 145 0.131 0.079 23 0.292 0.181 1 0.214 0.113 9 0.500 0.000 0 0.117 0.072 20

Ion

7 27 146 0.260 0.132 6 0.500 0.000 4 0.238 0.251 1 0.000 0.000 0 0.156 0.126 3

(all)   0.338 0.043 71 0.333 0.091 14 0.317 0.090 18 0.392 0.074 17 0.332 0.053 41

1   0.288 0.067 22 0.292 0.162 2 0.258 0.127 9 0.000 0.000 0 0.243 0.128 8

1 2  0.350 0.101 10 0.000 0.000 0 0.314 0.153 4 0.500 0.000 0 0.500 0.000 0

1 6  0.323 0.069 17 0.500 0.000 2 0.211 0.122 6 0.000 0.000 0 0.285 0.119 8

1 6 30 0.303 0.086 16 0.500 0.000 2 0.194 0.116 6 0.000 0.000 0 0.287 0.128 8

3   0.260 0.187 3 0.000 0.000 0 0.500 0.000 0 0.500 0.000 4 0.500 0.000 3

4   0.385 0.047 44 0.324 0.112 9 0.500 0.000 13 0.376 0.075 14 0.368 0.072 20

Particle

4 12  0.275 0.185 3 0.272 0.156 2 0.500 0.000 2 0.500 0.000 1 0.500 0.000 1
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4 13  0.452 0.054 19 0.500 0.000 3 0.500 0.000 6 0.347 0.131 6 0.362 0.092 13

4 13 64 0.500 0.000 11 0.500 0.000 2 0.500 0.000 5 0.337 0.149 5 0.344 0.110 10

4 14  0.359 0.059 30 0.318 0.150 4 0.500 0.000 5 0.392 0.116 7 0.402 0.084 9

4 14 67 0.369 0.061 24 0.500 0.000 3 0.500 0.000 2 0.500 0.000 5 0.338 0.142 5

4 14 68 0.361 0.125 6 0.243 0.251 1 0.500 0.000 3 0.276 0.157 2 0.500 0.000 4

7   0.373 0.121 7 0.500 0.000 2 0.500 0.000 1 0.500 0.000 2 0.314 0.155 5

7 29  0.378 0.125 6 0.500 0.000 2 0.500 0.000 1 0.500 0.000 2 0.314 0.145 4

7 29 178 0.292 0.187 3 0.500 0.000 1 0.500 0.000 1 0.500 0.000 2 0.500 0.000 2

(all)   0.273 0.061 35 0.393 0.104 8 0.166 0.105 5 0.500 0.000 7 0.198 0.096 14

4   0.237 0.080 23 0.500 0.000 6 0.290 0.153 4 0.500 0.000 6 0.246 0.119 8

4 14  0.189 0.096 15 0.500 0.000 3 0.285 0.173 3 0.500 0.000 6 0.286 0.123 8

4 14 67 0.133 0.083 13 0.500 0.000 2 0.500 0.000 1 0.500 0.000 5 0.265 0.173 3

Internalization

4 14 68 0.500 0.000 5 0.500 0.000 1 0.276 0.157 2 0.500 0.000 1 0.342 0.150 5

(all)   0.232 0.057 53 0.500 0.000 8 0.246 0.078 19 0.231 0.075 27 0.306 0.046 55

1   0.394 0.096 10 0.500 0.000 2 0.000 0.000 0 0.500 0.000 2 0.262 0.117 9

1 3  0.500 0.000 8 0.500 0.000 2 0.000 0.000 0 0.500 0.000 1 0.276 0.132 7

2   0.221 0.094 16 0.500 0.000 2 0.315 0.167 2 0.199 0.125 3 0.272 0.191 3

2 7  0.201 0.125 3 0.500 0.000 2 0.500 0.000 2 0.000 0.000 0 0.500 0.000 2

2 8  0.248 0.123 8 0.000 0.000 0 0.500 0.000 0 0.188 0.115 3 0.240 0.197 3

2 8 36 0.189 0.124 6 0.000 0.000 0 0.500 0.000 0 0.265 0.135 2 0.500 0.000 2

3   0.500 0.000 7 0.500 0.000 3 0.500 0.000 3 0.348 0.144 5 0.251 0.148 5

3 11  0.500 0.000 7 0.500 0.000 3 0.500 0.000 2 0.500 0.000 4 0.233 0.137 5

3 11 56 0.500 0.000 6 0.500 0.000 3 0.500 0.000 2 0.500 0.000 4 0.195 0.145 4

5   0.251 0.065 33 0.500 0.000 3 0.211 0.107 9 0.215 0.107 9 0.203 0.086 20

5 18  0.248 0.067 32 0.500 0.000 3 0.229 0.112 8 0.301 0.120 8 0.237 0.090 17

5 18 93 0.255 0.064 29 0.500 0.000 2 0.202 0.118 6 0.308 0.116 8 0.236 0.098 11

5 18 94 0.368 0.124 6 0.500 0.000 1 0.500 0.000 1 0.500 0.000 2 0.500 0.000 5

5 20  0.500 0.000 2 0.490 0.070 0 0.282 0.172 3 0.285 0.160 1 0.163 0.126 5

5 20 124 0.500 0.000 2 0.000 0.000 0 0.272 0.187 3 0.243 0.140 1 0.165 0.135 5

ROS

7   0.500 0.000 5 0.000 0.000 0 0.191 0.170 2 0.500 0.000 6 0.354 0.073 24
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7 28  0.500 0.000 5 0.490 0.070 0 0.200 0.162 2 0.500 0.000 6 0.250 0.117 9

7 28 153 0.500 0.000 3 0.000 0.000 0 0.500 0.000 0 0.500 0.000 1 0.338 0.146 5

(all)   0.373 0.115 7 0.500 0.000 1 0.272 0.187 3 0.139 0.108 7 0.230 0.105 14

1   0.344 0.126 6 0.500 0.000 1 0.280 0.171 3 0.119 0.105 5 0.237 0.099 11

1 4  0.364 0.118 6 0.500 0.000 1 0.282 0.183 3 0.128 0.102 5 0.242 0.106 11
Photoactivity

1 4 28 0.385 0.128 6 0.000 0.000 0 0.250 0.170 3 0.127 0.099 5 0.171 0.115 7

(all)   0.448 0.021 91 0.500 0.000 14 0.377 0.076 18 0.415 0.058 22 0.453 0.030 42

2   0.500 0.000 7 0.500 0.000 2 0.500 0.000 1 0.500 0.000 7 0.500 0.000 4

2 8  0.500 0.000 6 0.500 0.000 1 0.500 0.000 1 0.500 0.000 7 0.500 0.000 4

2 8 36 0.500 0.000 3 0.500 0.000 1 0.500 0.000 1 0.500 0.000 5 0.000 0.000 0

2 8 37 0.500 0.000 3 0.000 0.000 0 0.000 0.000 0 0.500 0.000 4 0.500 0.000 4

3   0.500 0.000 11 0.500 0.000 2 0.500 0.000 1 0.500 0.000 6 0.500 0.000 10

3 11  0.500 0.000 11 0.500 0.000 2 0.500 0.000 1 0.500 0.000 6 0.500 0.000 10

3 11 53 0.500 0.000 3 0.000 0.000 0 0.000 0.000 0 0.500 0.000 4 0.500 0.000 8

3 11 56 0.500 0.000 7 0.500 0.000 2 0.500 0.000 1 0.500 0.000 4 0.500 0.000 5

4   0.482 0.019 52 0.500 0.000 5 0.406 0.074 10 0.301 0.126 8 0.464 0.037 26

4 13  0.466 0.034 27 0.500 0.000 2 0.354 0.116 6 0.500 0.000 5 0.500 0.000 17

4 13 64 0.500 0.000 18 0.500 0.000 1 0.500 0.000 6 0.500 0.000 5 0.500 0.000 14

4 14  0.466 0.030 30 0.500 0.000 3 0.500 0.000 4 0.280 0.188 3 0.424 0.069 13

4 14 67 0.464 0.034 26 0.500 0.000 2 0.500 0.000 3 0.275 0.175 3 0.399 0.099 9

4 14 68 0.500 0.000 4 0.500 0.000 1 0.500 0.000 1 0.000 0.000 0 0.500 0.000 4

5   0.440 0.032 47 0.500 0.000 6 0.325 0.120 9 0.393 0.089 10 0.500 0.000 17

5 16  0.441 0.043 29 0.500 0.000 4 0.328 0.154 5 0.381 0.106 8 0.500 0.000 11

5 16 80 0.393 0.099 9 0.500 0.000 1 0.500 0.000 1 0.500 0.000 2 0.500 0.000 3

5 16 81 0.285 0.160 2 0.480 0.098 2 0.500 0.000 1 0.500 0.000 3 0.500 0.000 3

5 16 83 0.500 0.000 12 0.000 0.000 0 0.000 0.000 0 0.500 0.000 1 0.500 0.000 4

5 16 84 0.500 0.000 9 0.000 0.000 0 0.000 0.000 0 0.000 0.000 0 0.500 0.000 1

5 18  0.429 0.049 27 0.500 0.000 3 0.353 0.142 6 0.345 0.146 5 0.500 0.000 8

Membrane

5 18 97 0.402 0.066 18 0.500 0.000 2 0.368 0.119 6 0.500 0.000 2 0.500 0.000 6

DNA (all)   0.274 0.080 24 0.500 0.000 6 0.205 0.164 2 0.251 0.138 5 0.141 0.097 4
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2   0.357 0.131 6 0.500 0.000 2 0.500 0.000 0 0.295 0.182 3 0.500 0.000 0

5   0.202 0.120 9 0.500 0.000 3 0.500 0.000 2 0.248 0.251 1 0.199 0.132 2

5 17  0.283 0.145 6 0.500 0.000 3 0.500 0.000 1 0.000 0.000 0 0.275 0.195 1

5 17 89 0.211 0.137 3 0.500 0.000 3 0.500 0.000 1 0.000 0.000 0 0.260 0.180 1

(all)   0.453 0.030 43 0.500 0.000 7 0.223 0.143 5 0.219 0.133 7 0.433 0.071 15

2   0.462 0.040 22 0.500 0.000 3 0.294 0.151 4 0.170 0.119 4 0.395 0.111 8

2 8  0.425 0.069 13 0.000 0.000 0 0.330 0.145 4 0.173 0.135 3 0.325 0.166 5

2 8 36 0.401 0.109 8 0.000 0.000 0 0.297 0.172 3 0.155 0.132 3 0.304 0.160 4

Protein

2 8 37 0.500 0.000 6 0.000 0.000 0 0.500 0.000 1 0.252 0.251 1 0.500 0.000 1
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a. Ion b. Photoactivity
Ag Cu CuO TiO2 ZnO Ag Cu CuO TiO2 ZnO

Ag Ag
Cu Cu

CuO CuO
TiO2 TiO2
ZnO ZnO

c. DNA Damage d. Protein Damage
Ag Cu CuO TiO2 ZnO Ag Cu CuO TiO2 ZnO

Ag Ag
Cu Cu

CuO CuO
TiO2 TiO2
ZnO ZnO  

Figure S1. Statistically significant differences in conclusions based on ENM composition. Parts 
(a) through (d) show mechanism questions for which there were differences in conclusions 
between ENM compositions: ions (a), photoactivity (b), DNA damage (c), and protein damage 
(d). A blue cell indicates that the fraction of positive conclusions about the corresponding 
mechanism question was higher for the ENM composition on the horizontal axis versus the ENM 
composition on the vertical axis. A red cell indicates that the fraction of negative conclusions 
about the corresponding mechanism question was higher for the ENM composition on the 
horizontal axis versus the ENM composition on the vertical axis.
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a. ENM particle size (dry, as measured by TEM)
Effect of particle size (dry) on conclusions

<10nm 10-20nm 20-30nm 30-40nm 40-50nm >100nm Compare multiple Unspecified

Ion ZnO

Particle Ag ZnO

Internalization

ROS TiO2 TiO2 CuO Ag

Photoactivity TiO2

Membrane Damage

DNA Damage ZnO ZnO

Protein Damage

proportion of positive conclusions for mechanisms on the verticle axis was LOWER  in studies that performed the characterization technique on the horizontal axis vs 
those that did not

proportion of positive conclusions for mechanisms on the verticle axis was HIGHER in studies that performed the characterization technique on the horizontal axis vs 
those that did not

b. ENM capping agent

Effect of particle size (hydrodynamic) on conclusions

100-200nm 200-500nm Compare multiple Unspecified

Ion ZnO ZnO

Particle

Internalization

ROS ZnO

Photoactivity

Membrane Damage

DNA Damage

Protein Damage

Effect of presence of capping agent on conclusions

Uncapped Unspecified

Ion Cu

Particle ZnO

Internalization

ROS TiO2

Photoactivity

Membrane Damage

DNA Damage

Protein Damage

proportion of positive conclusions for mechanisms on the verticle axis was LOWER  in studies that performed the 
characterization technique on the horizontal axis vs those that did not

proportion of positive conclusions for mechanisms on the verticle axis was HIGHER in studies that performed the 
characterization technique on the horizontal axis vs those that did not

proportion of positive conclusions for mechanisms on the verticle axis was LOWER  in studies that performed the 
characterization technique on the horizontal axis vs those that did not

proportion of positive conclusions for mechanisms on the verticle axis was HIGHER in studies that performed the 
characterization technique on the horizontal axis vs those that did not
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c. Bacterium used

Gram positive Gram negative Both Not specified

Ion

Particle ZnO ZnO

Internalization

ROS CuO

Photoactivity ZnO

Membrane Damage CuO, ZnO

DNA Damage

Protein Damage

d. Characterization techniques

SEM/TEM DLS Zeta potential XRD BET UV-Vis EDX XPS FTIR PL Spectroscopy

Ion ZnO ZnO Ag ZnO

Particle Cu Ag

Internalization ZnO

ROS TiO2 CuO TiO2 Ag, TiO2 ZnO TiO2 Ag Ag

Photoactivity TiO2

Membrane Damage

DNA Damage Ag ZnO

Protein Damage TiO2
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e. Antibacterial activity assessment method
Effect of toxicity assay on conclusions

Plating Disk diffusion Broth dilution Membrane Other
Multiple 

concentrations Multiple time points

Ion ZnO Ag Ag

Particle

Internalization Ag Ag

ROS ZnO

Photoactivity

Membrane Damage

DNA Damage ZnO Ag

Protein Damage TiO2

proportion of positive conclusions for mechanisms on the verticle axis was LOWER  in studies that performed the characterization technique on the 
horizontal axis vs those that did not

proportion of positive conclusions for mechanisms on the verticle axis was HIGHER in studies that performed the characterization technique on the 
horizontal axis vs those that did not

f. Lighting conditions (used in mechanism-targeted experiments)

Dark Unspecified

Ion Ag   ZnO

Particle

Internalization ZnO

ROS Ag

Photoactivity

Membrane Damage

DNA Damage

Protein Damage TiO2
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g. ENM hydrodynamic size (as measured by DLS)

100-200nm 200-500nm Compare multiple Unspecified

Ion ZnO ZnO

Particle

Internalization

ROS ZnO

Photoactivity

Membrane Damage

DNA Damage

Protein Damage

h. Group number of mechanism-targeted experimental method (for explanation of method Groups, see Table S3 or Table 3) 

1 2 3 4 7

Ion Ag

Particle CuO ZnO

Internalization

ROS Ag TiO2

Photoactivity

Membrane 
Damage Ag

DNA Damage Ag, TiO2

Protein Damage

Figure S2. Statistically significant differences in conclusions arising from selected study design variables, with different categories of 
study design variables (listed in Table 2 and Table S2) shown in parts (a) through (h). The eight mechanism questions are shown on the 
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vertical axis, and study design variables within each category are shown on the horizontal axis. Only variables which yielded a 
statistically significant difference in conclusions for at least one mechanism question, within at least one ENM composition, are included 
here; therefore, not all variables and categories listed in Table S2 are included. A blue cell indicates that the fraction of positive 
conclusions about the corresponding mechanism question was higher in the subset of studies for which the corresponding study design 
variable was true versus the subset of studies for which the corresponding study design variable was false, within the ENM composition 
group(s) specified. A red cell indicates that the fraction of negative conclusions about the corresponding mechanism question was higher 
in the subset of studies for which the corresponding study design variable was true versus the subset of studies for which the 
corresponding study design variable was false, within the ENM composition group(s) specified. A blank cell indicates that no statistically 
significant difference in conclusions was found for the corresponding mechanism question based on the corresponding study design 
variable, within any ENM composition group.
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