1	Supplementary Information
2	3D Printed Graphene-Biopolymer Aerogel for Water Contaminant
4	Removal: A Proof of Concept
5	Arvid Masud, ¹ Chi Zhou, ² and Nirupam Aich ^{1,*}
6	¹ Department of Civil, Structural and Environmental Engineering, University at Buffalo, The
7	State University of New York, Buffalo, NY 14260
8	² Department of Industrial and Systems Engineering, University at Buffalo, The State University
9	of New York, Buffalo, NY 14260
10	
11	Submitted to
12	Environmental Science: Nano
13	
14	December 20, 2020
15	
16	
17	
18	
19	
20	
21	
22	
23	*Corresponding Author: Nirupam Aich, Email: nirupama@buffalo.edu

1. Shear Rate Calculation for Rotational Viscometer:

$$\frac{2\omega R_c^2 R_b^2}{X^2 (R_c^2 - R_b^2)} \qquad \dots \dots (\text{Equation 1})^1$$
25 Shear rate (s⁻¹) = $\overline{X^2 (R_c^2 - R_b^2)} \qquad \dots \dots (\text{Equation 1})^1$
26 Where, ω = angular velocity of spindle (rad/s) $\left[= \frac{2\pi}{60} \cdot N \right]$,
27 N = spindle rotation per minute (rpm)
28 R_c = radius of container (mm)
29 R_b = radius of the spindle
30 X = radius at which shear rate is calculated (mm)
31
32

- 43 Figure S1. Summary of the steps involved in the entire 3D printing process of G-PDA-BSA
- 44 aerogel.

47 Figure S2. Segmented section (blue rectangular box) of the G-PDA aerogel.

50 Figure S3: (a) N₂ adsorption-desorption isotherm for GO and G-PDA-BSA. The solid line 51 represents adsorption isotherm whereas the dotted line represents desorption isotherm and 52 differential pore volume distribution as function of pore width for (b) GO and (c) G-PDA-BSA 53 aerogel

56 Figure S4. SEM and EDS spectra of GO (a & b) and G-PDA-BSA aerogel (c & d)

58

59 Figure S5. Equilibrium adsorption isotherms for (a) Cr (VI), (b) Pb (II), (c) MB, and (d) EB with

60 fitted isotherm model curves

Rotation	Shear rate (s ⁻¹)	Apparent viscosity (mPa.s)			
(rpm)		GO	G-PDA	G-PDA-BSA	
6	1.27	32	220	98300	
12	2.54	28	130	49050	
30	6.36	21	120	19140	
60	12.71	17	44	9520	

63 Table S1: Apparent viscosity of dispersions at different rotations of Rotational Viscometer

66 Table S2: Expressions of isotherm models

Isotherm Model	Non-linear Expression	Parameters
Langmuir	$q_e = \frac{bq_m C_e}{1 + bC_e}$	b = Langmuir isotherm Constant associated with energy
		$q_m =$ Maximum monolayer adsorption capacity (mg/g)
Freundlich	$q_e = K_f C_e^{\frac{1}{n}}$	K_f = Freundlich isotherm constant associated with
		1
		adsorption capacity $(mg/g)(L/g)^{\overline{n}}$
		n = Freundlich isotherm constant associated with
		adsorption intensity

67 Where, q_e = Adsorption capacity at equilibrium (mg/g) (dependent variable)

68 $C_e =$ Equilibrium concentration in adsorbate (mg/L) (independent variable)

Contaminant	Langmuir Isotherm Model			Freundlich Isotherm Model		
	b	q_m	Adjusted	K _f	n	Adjusted
	(L/mg)	(mg/g)	R^2	(mg/g)(L/g)		R^2
				1		
				\overline{n}		
Cr (VI)	0.31	44.78	0.79	15.81	4.26	0.65
Pb (II)	0.06	55.96	0.95	7.97	2.38	0.94
MB	1.62	33.60	0.91	15.37	4.57	0.87
EB	0.03	59.41	0.99	4.10	1.77	0.96

70 Table S3: Values of Isotherm model parameters for different contaminants

References

73 1. Brookfield, E., More solutions to sticky problems. Brookfield Engineering Labs., Editor

2005.