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Synthesis of α-MnO2 nanostructures

The two α-MnO2 nanostructures were synthesized with methods modified from those 

reported by Rong et al.1 α-MnO2-100 was synthesized as follows: firstly, 40 mmol L-1 of 

KMnO4 and 10 mmol L-1 of (NH4)2SO4 were dissolved in 70 mL of deionized water under 

continuous magnetic stirring at room temperature for 30 min. The mixture solution was then 

transferred into a 100-mL Teflon-lined stainless-steel autoclave and maintained at 180 °C for 

24 h. After the autoclave cooled naturally to room temperature, the dark brown precipitates 

were collected by centrifugation, then washed several times with deionized water, and finally 

dried at 60 °C. α-MnO2-310 was synthesized similarly, except that (NH4)2C2O4 was used 

instead of (NH4)2SO4. 

Analysis of oxidation products of bisphenol A 

The aqueous solutions containing BPA oxidation products were filtrated through a 0.22-µm 

membrane filter, and extracted by trichloroethane. The extracts were concentrated at room 

temperature (25.0 ± 0.5 °C), diluted to 1 mL with methanol, and then analyzed by UPLC-

MS/MS equipped with an Acquity UPLC BEH C18 column (1.7 μm, 2.1 × 50 mm) (XEVO-

TQS, Waters, USA). The mobile-phase was methanol with a flow rate of 0.45 mL/min. The 

mass spectrometer was operated in the m/z 50-500 range for UPLC-MS/MS. The cone 

voltage was set to 40 V. The desolvation temperature and source temperature were 350 and 

150 °C, respectively.

Density functional theory (DFT) calculation

First-principles calculations were performed by employing the Vienna ab-initio simulation 

package (VASP). The core-valence interaction was represented by the projector-augmented 

wave (PAW) method.2, 3 The cut-off energy was set at 450 eV for the plane-wave basis 
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restriction. The generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof 

(PBE) was used to describe exchange-correlation functional. Local Hubbard parameter U 

correction was applied in the calculations with a U value of 5.2 for Mn.1 The Brillouin-zone 

integration was sampled with the K-points according to the Monkhorst-Pack scheme for α-

MnO2 surfaces. The energy criterion for convergence of the electron density was set at 10-5 

eV, and the force criterion was set at 0.05 eV/Å. A vacuum slab of 20 Å was applied for 

surface isolation to prevent interactions between two adjacent surfaces for all surface models. 

Three surface layers were relaxed and all other atoms were fixed to simulate the bulk 

structure.

The undissociated BPA molecule, which is the predominant species under the 

experimental conditions, was used in the calculations. To account for the effect of water on 

the adsorption of BPA (i.e., the polar interactions of water molecules with BPA and with 

MnO2), one water molecule was placed in the systems and was allowed to form hydrogen 

bonding with BPA, or with the α-MnO2 surface. Note that for α-MnO2 the bidentate complex 

on the {100} facets formed with Mn4c atoms was selected in the DFT calculations, rather than 

Mn5c atoms, because higher adsorption energy to form monodentate complex was observed 

between Mn4c atoms and the BPA molecules than that of Mn5c atoms; similarly, calculations 

were conducted for the bidentate complex on the {310} facets formed with Mn3c atoms, 

rather than Mn5c atoms. The adsorption energies ( ) were calculated as follows:∆Eads

 (S1)
                                           ∆Eads =  Eslab + H2O + BPA ‒ (Eslab + EH2O + EBPA)

where , , , and  are the total energy of the optimized slab model 
Eslab + H2O + BPA Eslab

EH2O EBPA

with a H2O molecule and a BPA surface complex, the energy of the initial slab model surface, 

the energy of a H2O molecule and the energy of a BPA molecule, respectively. 
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Reaction scheme of phenols oxidation by manganese oxides

The oxidation of phenols by manganese oxides includes the following steps:4

Precursor complex formation:

> MnIII/IV + ArOH  (> MnIII/IV, ArOH) (S2)⇌

Electron transfer:

(> MnIII/IV, ArOH)  (> MnII, ArO·) + H+  (S3)⇌

Release of phenoxy radical:

(> MnII, ArO·)  > MnII + ArO· (S4)⇌

Release of reduced Mn(II):

> MnII  > Mn2+  (S5)⇌

Coupling and further oxidation:

ArO· + ArO·  quinones, dimers, and polymeric oxidation products (S6)→
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Fig. S1 SEM images of (a, b) α-MnO2-100 and (c, d) α-MnO2-310.
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Fig. S2 Release kinetics of dissolved Mn2+ during the oxidation of BPA by α-MnO2-100 and 
α-MnO2-310. [BPA]0 = 10 mg L-1, [α-MnO2]0 = 35 mg L-1. Error bars indicate variances of 
duplicates.
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Fig. S3 Total ion chromatogram (TIC) of BPA and its reaction products by α-MnO2-100 and 
α-MnO2-310.
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(a)  α-MnO2-100  RT = 5.97 min
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(b)  α-MnO2-310  RT = 5.97 min
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(c)  α-MnO2-100  RT = 5.96 min
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(d)  α-MnO2-310  RT = 5.98 min
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(e)  α-MnO2-100  RT = 9.85 min
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(f)  α-MnO2-310  RT = 9.67 min
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(g)  α-MnO2-100  RT = 15.82 min
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(i)  α-MnO2-100  RT = 14.00 min
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Fig. S4 Mass spectra of identified BPA reaction products by (a, c, e, g, i) α-MnO2-100 and (b, 
d, f, h, j) α-MnO2-310, respectively. 
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Fig. S5 Total density of states (TDOS) of α-MnO2 surfaces exposed with the {100} facet 
before and after BPA adsorption in different complexation configurations: (a) monodentate 
coordination to Mn4c, (b) monodentate coordination to Mn5c, (c) bidentate coordination. The 
vertical blue dashed lines represent the Fermi level. New peaks (in green dashed frame) were 
observed at 2.5-5.0 eV in the valence band (VB) after BPA adsorption, indicating the 
formation of stable adsorption complexes.
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Fig. S6 Total density of states (TDOS) of α-MnO2 surfaces exposed with the {310} facet 
before and after BPA adsorption in different complexation configuration: (a) monodentate 
coordination to Mn3c, (b) monodentate coordination to Mn5c, (c) bidentate coordination. The 
vertical blue dashed lines represent the Fermi level. New peaks (in green dashed frame) were 
observed at 2.5-5.0 eV in the valence band (VB) after BPA adsorption, indicating the 
formation of stable adsorption complexes.
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Fig. S7 (a, b) The top views and (c, d) side views of the atomic arrangement of the {100} and 
{310} facets of α-MnO2, respectively. Yellow spheres are three-coordinated Mn (Mn3c) 
atoms, blue spheres are four-coordinated Mn (Mn4c) atoms, green spheres are five-
coordinated Mn (Mn5c) atoms, purple spheres are six-coordinated Mn (Mn6c) atoms and red 
spheres are O atoms.  
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