Supplementary Information

Bi₂O₃/Nylon multilayered nanocomposite membrane for the photocatalytic inactivation of waterborne pathogens and degradation of mixed organic pollutants

Tanveer A. Gadhi¹, Aizaz Qureshi¹, Najeebullah Channa¹, Rasool Bux Mahar¹, Alessandro Chiadò^{2*}, Chiara Novara², Alberto Tagliaferro²

¹U.S. Pakistan Center for Advanced Studies in Water (USPCASW), Mehran, University of Engineering and Technology, Jamshoro 76062, Pakistan.

²Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

*Corresponding Authors Email: <u>alessandro.chiado@polito.it</u>

Table S1 FT-IR band assignments of Nylon-6.

Wavenumbers (cm ⁻¹)	IR Assignements	Reference
3297	-NH stretching	[1-3]
3084	-CH stretching (asym);	[1-3]
	-NH Fermi resonance;	
2936	-CH ₂ asymmetric stretching	[2, 3]
	vibrations in polyamide backbone;	
2860	-CH ₂ symmetric stretching vibrations	[1,3]
	in polyamide backbone;	
1638	Amide I stretching (C=O stretching);	[1-4]
1540	Amide II stretching (as a	[1-3]
	combination of -CN stretching and -	
	NH bending);	
1461	-NH deformation;	[3]
	-CH ₂ scissoring;	
1370	Amide III stretching + -CH ₂	[2,3]
	wagging;	
1296	-CH ₂ wagging/twisting;	[3]
1262	Amide III stretching $+$ -CH ₂	[1,2]
	wagging;	
1236	-CH ₂ wagging/twisting;	[2]
1200	-CCH bending (sym);	[1,2,4]
	-CH ₂ twisting/twisting;	
	Amide III;	
1170	CO-NH skeletal motion	[2,4]
1121	C-C stretching (sym) (amorphous	[2,4]
	phase)	
972	CO-NH in plane (γ)	[2,3,4]
930	CO-NH in plane (α)	[2,4]

Fig. S1 EDX spectra of A) bare Nylon and B) Bi₂O₃/Nylon multilayered membranes.

Fig. S2 Absorbance spectra of the IC dye removal using Bi₂O₃/Nylon composite under LED lamp.

Fig. S3 Absorbance spectra of the IC dye removal using Bi₂O₃/Nylon composite under LED lamp.

Figure. S4. Acquired separate live and dead fluorescence stained images of *E. coli* cells using Bi₂O₃/Nylon

References

- 1. Fatarella, E., et al., *Nylon 6 film and nanofiber carriers: Preparation and laccase immobilization performance.* Journal of Molecular Catalysis B: Enzymatic, 2014. **102**: p. 41-47.
- 2. Lee, K.-H., et al., *Polarized FT-IR study of macroscopically oriented electrospun nylon-6 nanofibers*. Macromolecules, 2008. **41**(4): p. 1494-1498.

- 3. Pant, H.R., et al., *Effect of lactic acid on polymer crystallization chain conformation and fiber morphology in an electrospun nylon-6 mat.* Polymer, 2011. **52**(21): p. 4851-4856.
- 4. Vasanthan, N., Determination of molecular orientation of uniaxially stretched polyamide fibers by polarized infrared spectroscopy: comparison of X-ray diffraction and birefringence methods. Applied spectroscopy, 2005. **59**(7): p. 897-903.