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Experimental Section
Chemicals and materials. NiCl2•6H2O, HCl, NaOH and absolute ethyl alcohol were 

bought from Sinopharm. Terephthalic acid (BDC, 99.0%), acetonitrile (MeCN) and 

triethanolamine (TEOA) were purchased from Aladdin. N, N-dimethylformamide 

(DMF) and [Ru(bpy)3]Cl2•6H2O were obtained from Macklin. All reagents were used 

as purchased with no further purification. Clear mineral water bottles (PET plastics) 

collected from domestic waste were used as the raw material. The electroplating sludge 

(EPS) was obtained from a factory in Guangdong province, China. Deionized water 

was used for all of the experiments in this work.

Acid leaching of the EPS. the raw sludge was first dried overnight to constant weights 

at 105 oC and then grinded to 100 mesh before further utilization. Typically, 5.0 g of 

the dried sludge was placed in a conical flask, followed by the addition of 25 mL of a 

hydrochloric acid solution (2.0 mol/L), magnetic stirring for 3 h, and then centrifuged 

(8000 rpm, 5 min). The supernatant was collected and filtered for further process. A 

larger volume or higher concentration of the HCl would be used for the completely 

leaching of Ni element from the sludge. The acid leaching solution was labeled as Ni(aq).

Alkaline hydrolysis of the PET plastic waste. The labels and caps of the clear mineral 
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water bottles were removed and then the bottles were cut into small pieces. The small 

flakes were washing with water and soap, and then dried in an oven overnight at 60 oC. 

PET hydrolysis experiment was carried out in a 100 mL Teflon-lined stainless steel 

autoclave and the product was labeled as BDC. 3.0 g of PET flakes were put into the 

autoclave with 1.248 g NaOH (2 equivalents with respect to BDC present in the PET) 

and 30 mL H2O, then the autoclave was heated up to 200 oC and maintained for 6 h. 

After natural cooling, NaOH (2M) was introduced into the above mixture until pH 13 

was reached, so that non-hydrolyzed PET (if any) could be removed by centrifugation. 

Next, the supernatant was acidified with 6M HCl to pH 1 and the white precipitated 

BDC was separated by centrifugation. After that, the BDC was washed twice with water 

and ethanol respectively, and vacuum-dried at 90 oC for 12 h.

Synthesis of Ni MOFs. The Ni MOFs was prepared via a solvothermal process 

according to previous work with minor modification. Firstly, 64 mL DMF, 4 mL 

ethanol and X mL (X = 4 – VNi(aq)) H2O were mixed in a beaker. Secondly, 1.5 mmol 

BDC was added into the above mixture under magnetic stirring. Thirdly, 1.5 mmol 

NiCl2•6H2O or a certain volume of Ni(aq) was added and kept stirring until Ni2+ 

completely dissolved. Then the above solution was transferred into a 100 mL Teflon-

lined stainless steel autoclave and heated at 140 oC for 24 h. Finally, the products were 

obtained via centrifugation, washed with water and ethanol for 5 times, and dried using 

vacuum freeze dryer.

Synthesis of bulk Ni(OH)2. 6 mmol NiCl2•6H2O was dissolved in 54 mL H2O under 

magnetic stirring, then 6 mL NaOH solution (2M) was added at 0.5 mL/min using a 

syringe pump. Then the above mixture was transferred into a 100 mL Teflon-lined 

stainless steel autoclave and heated at 180 oC for 12 h. Subsequently, the bulk Ni(OH)2 

was collected via centrifugation, washed with water and ethanol for 3 times, and dried 

by vacuum freeze-drying.

Photocatalytic CO2 reduction. Typically, 1 mg of photocatalyst, 7.5 mg of 

[Ru(bpy)3]Cl2•6H2O (labeled as Ru, bpy = 2’2-bipyridine), 1 mL TEOA, 2 mL H2O 



and 3 mL MeCN were added into a gas-closed quartz bottle (~ 60 mL in capacity), 

respectively. The reaction devices were thoroughly degassed, and then backfilled with 

high purity CO2. Subsequently, the quartz reactors were put in a multi-channel 

photocatalytic reaction system (PCX50A Discover, Beijing Perfect Light Technology 

Co., Ltd.) with several 5W white LED lights (400 nm - 1000 nm). During the 

photocatalytic reaction, the Ni MOF was continuously dispersed in the solution by a 

magnetic stirrer. After each irradiation time, 0.8 mL of product gases in the headspace 

of the reactor was withdraw through an Agilent gas-tight syringe and analyzed by an 

Agilent 7890B GC. The identities of product gases were determined by retention time 

and the yield of CO and H2 were calculated by external standard method (Figure S10). 

Every sample was tested double times (the deviation was less than 3%) and got the 

average activity for photoreduction of CO2. To evaluate photocatalyst reusability, 50 

mg of the Ni MOF was used for photocatalytic reaction and recycled via a centrifuging, 

washing and drying process after each irradiation time, and then mixed with 7.5 mg of 

Ru, 1 mL TEOA, 2 mL H2O and 3 mL MeCN for the next cycle.

The selectivity for CO was calculated using the equation below

Selectivity of CO = n(CO)/[n(CO) + n(H2)] x 100%

The apparent quantum yield (AQY) was measured under the same photocatalytic 

reaction condition irradiated by a LED light (420 nm). The number of incident photons 

was measured using a radiant power energy meter (Ushio spectroradiometer, USR-40). 

The AQY was calculated according to the equation below:

AQY(%) = number of reacted electrons/number of incident electrons x 100%

  =number of evolved (CO + H2) molecules x 2/number of incident electrons x100%

Materials characterization. The crystal structure of the materials was analyzed on a 

Bruker D8 ADVANCE X-ray diffractometer equipped with Cu-Kα radiation. Field 

emission scanning electron microscopy (FE-SEM, Hitachi Regulus 8100) images, field 

emission transmission electron microscopy (FE-TEM, FEI Talos F200X) images and 

EDX elemental mapping images were collected for the characterization of structure and 

elemental distribution. X-ray photoelectron spectroscopy (XPS) measurements were 



performed on a Thermo Scientific ESCA Lab250 spectrometer, and all of the binding 

energies were calibrated with respect to the C 1s peak at 284.6 eV. The N2 

adsorption/desorption isotherms on the adsorbent at 77K and CO2 adsorption isotherm 

on the adsorbent at 298K were measured with a Micromeritics ASAP 2020 analyzer. 

Prior to gas adsorption measurements, all of the samples were degassed at 393K for 6 

h. Electrochemical impedance spectroscopy (EIS) measurements were tested on an 

electrochemical workstation (CHI 660E) based on typical three-electrode system 

comprised of the Ni-MOF modified FTO glass as the current collector, platinum wire 

as the counter electrode, and saturated calomel electrode as the reference electrode. The 

EIS was recorded in a 0.1 M Na2SO4 solution with a frequency range from 0.01 Hz to 

1MHz at 0.61V, and the amplitude of the applied sine wave potential in each case was 

5 mV. Photoluminescence (PL) spectra and time-resolved PL spectra of the 

photocatalysts were collected on a FLS980 spectrometer under 540 nm laser irradiation 

at room temperature. The results were obtained in a TEOA/H2O/MeCN (1 mL/2 mL/3 

mL) mixture containing Ru (7.5 mg), which was as same as the photocatalytic CO2 

reduction reaction. The concentrations of metal ions in the acid leaching of the Ni 

sludge were analyzed by an inductively coupled plasma optic emission spectrometer 

(ICP-OES, Perkin Elmer Avio 200).



Figure S1. (a) Photograph of the Ni sludge, (b) XRD profile of the Ni sludge, (C) pie 
chart of the elemental composition of the Ni sludge determined by the XRF analysis, 
and (d) SEM image of pristine Ni sludge.

Figure S2. The effect of concentration a) and dosage b) of the HCl solution on the 
extraction yield of the Ni element.



Figure S3. The effects of pH conditions a), temperature b), time c) and dosage of 
precursors d) on the conversion rate of PET flakes.



Figure S4. TEM images of the Ni-MOF-W (a and b) and Ni-MOF-C (c and d).

Figure S5. XRD patterns of the Ni-MOF synthesized from waste metal source (Ni-
MOF-W2) or from waste PET plastic source (Ni-MOF-W1).



Figure S6. SEM images of the Ni-MOF synthesized from waste PET plastic source (Ni-
MOF-W1) or from waste metal source (Ni-MOF-W2).

Figure S7. The XRD pattern a) and SEM image b) of the used Ni-MOF-W after the 
stability tests.



Figure S8. N2 adsorption isotherms (a and b), CO2 adsorption isotherms c), EIS spectra 
d), steady-state PL spectra e) and time-resolved transient PL decay spectra f) of the Ni-
MOF-W and Ni-MOF-C.

In order to understand the high CO2 reduction activity of the Ni-MOF-W, physical 

and photoelectrochemical characterizations have been carried out. The Ni-MOF-W 

exhibits a higher CO2 uptake, a lower charge-transfer resistance and a shorter emission 

lifetime than that of the Ni-MOF-C (Figure S8). However, the steady-state PL intensity 

of the Ni-MOF-W is much stronger than that of the Ni-MOF-C, indicating an inefficient 

charge-carrier separation in Ni-MOF-W. All of these factors combine to create no better 

performance of the Ni-MOF-W than that of the Ni-MOF-C.



Table S1. The concentrations of metal ions in the acid leaching solution of the Ni-
containing electroplating sludge

Samp./Conc. Ni, mg/L Na, mg/L Fe, mg/L Cu, mg/L Al, mg/L Zn, mg/L
1# 26.82 0.65 — — — — 0.0001 — —
2# 46.83 0.47 0.0019 0.032 — — — —
3# 43.85 — — 1.71 0.15 0.072 0.018
4# 74.30 0.38 2.97 0.26 0.13 0.040

Figure S9. N2 sorption isotherms (a) and CO2 sorption isotherms (b) of the Ni-MOFs 
based on the PET-derived BDC and different leaching solution of the Ni-containing 
EPS.

Table S2. Surface area and CO2 adsorption capacity of the Ni-MOF samples
Term/Samp. Ni-MOF-C Ni-MOF-W 2# 3# 4#

SBET

(m2/g)
49.7 63.3 56.2 82.0 40.5

QCO2

(cm3/g)
2.4 3.9 3.3 3.2 3.0

Note: the CO2 adsorption capacities were recorded at normal temperatures (298K) and pressures 
(1 atm).



Figure S10. The standard curve of CO (a) and H2 (b).


