Appendix A. Supplementary Data

Facile fabrication of Bi nanoparticle-decorated $g-C_3N_4$ photocatalysts for effective tetracycline hydrochloride degradation: environmental factors,

degradation mechanism, pathways and biotoxicity evaluation

Dongling Jia,*^a Yifan Zhang,^a Xue Zhang,^b Peiying Feng,^a Lin Yang,^b Ruonan Ning,^a Hongzhi Pan*^a and Yuqing Miao*^b

^a Shanghai University of Medicine & Health Sciences, Shanghai 201318, People's Republic of China

^b University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China

* Corresponding authors.

E-mail address: jiadongling1@126.com; panhz@sumhs.edu.cn; yqmiao@usst.edu.cn

Analysis of TC-H and intermediates

An ultra-performance liquid chromatograph (UPLC, Waters) equipped with a mass spectrometer (AB Sciex Triple Quad 5500) was used to evaluate the effect of different types of water matrices on low concentration of TC-H during the photocatalytic process. A Waters Acquity BEH C18 column (2.1 mm \times 50 mm, 1.7 µm) was employed, and the column temperature was set at 35 °C. The mobile phase was a mixture of 0.1% fomic acid in water (A) and 0.1% fomic acid in MeOH (B) with a flow rate of 0.4 mL min⁻¹. The injection volume of samples was 10 µL.

Analysis of photodegradation intermediates was performed by a high-performance liquid chromatograph tandem mass spectrometer (Ultimate 3000 UHPLC-Q Exactive, Thermo Scientific, US) with an Eclipse Plus C18 column (100 mm × 4.6 mm, 5 μ m). The mobile phase was 0.1% formic acid solution (A, 80%) and acetonitrile (B, 20%) at flow rate of 0.5 mL min⁻¹ with the column temperature of 30 °C. Heated electrospray ionization (HESI) source in positive mode was used to estimate the TC-H and intermediates in the range of 50–600 m/z.

Fig. S1. (a) TEM, (b) HR-TEM, (c) SAED pattern and (d) size distribution of the asprepared Bi nanoparticles.

Fig. S2. (a,b) SEM images of the bulk $g-C_3N_4$, (c,d) SEM images of the porous $g-C_3N_4$ nanosheets, the insets in (b) and (d) show that the $g-C_3N_4$ nanosheet have a larger volume than bulk $g-C_3N_4$ with the same mass, (e,f) TEM micrographs of $g-C_3N_4$ nanosheets, and the inset in (e) is the SAED pattern of $g-C_3N_4$ nanosheets.

Fig. S3. Zeta potential distribution of the exfoliated $g-C_3N_4$ nanosheets (a), and Bi nanoparticles (b) dispersed in water.

Fig. S4. EDS element mapping analysis of the 10 wt%-BiNPs/g- C_3N_4 nanocomposite.

Fig. S5. Electron micrographs of the 2 wt%-BiNPs/g- C_3N_4 nanocomposite. (a,b) SEM micrographs of the sample, (c,d) TEM images of the sample, (e) HR-TEM of the surface of nanosheet, (f) SAED pattern of the sample.

Fig. S6. Electron micrographs of the 4 wt%-BiNPs/g- C_3N_4 nanocomposite. (a) SEM and (b) TEM images of the sample, (c) HR-TEM micrograph of the surface of nanosheet, (d) the corresponding SAED pattern.

Fig. S7. Electron micrographs of the 8 wt%-BiNPs/g- C_3N_4 nanocomposite. (a) SEM and (b) TEM micrographs of the sample.

Fig. S8. Electron micrographs of the 12 wt%-BiNPs/g- C_3N_4 nanocomposite. (a) SEM and (b) TEM micrographs of the sample.

Fig. S9. XPS spectrum of N 1s region of the g-C₃N₄ nanosheet.

Fig. S10. (a) N_2 adsorption-desorption isotherm and (b) pore size distribution profile of the g-C₃N₄ nanosheets and 10 wt%-BiNPs/g-C₃N₄ nanocomposite.

Fig. S11. (a) Survey XPS spectrum of the 10 wt%-BiNPs/g- C_3N_4 nanocomposite after photocatalytic degradation reaction. High-resolution XPS spectra of C 1s (b), N 1s (c), Bi 4f (d) and O 1 s (e) regions of the sample.

Fig. S12. pH dependant specification and molecular structure of TC-H under variable pH values.

Fig. S13. The total ion chromatograms (TICs) of the photodegradation mixtures at different light irradiation time points.

Fig. S14. Toxicity evaluation of the photodegradation mixtures by 10 wt% BiNPs/g- C_3N_4 at different minutes with the initial TC-H concentration of 20 mg L⁻¹.

Fig. S15. Release of bismuth ions during the photocatalytic reaction process.

Table. S1. Kinetic parameters of the photoluminescence decays analysis of the $g-C_3N_4$ and 10 wt%-BiNPs/g-C₃N₄.

Samples	Component	Life time (ns)	Relative	χ^2
			percentage (%)	
g-C ₃ N ₄	τ_1	2.3355	38.70	1.021
	$ au_2$	9.1681	61.30	
10 wt%-BiNPs/g-C ₃ N ₄	$ au_1$	1.7998	43.63	1.217
	$ au_2$	7.5409	56.37	

Catalysts	Mass of catalyst	TC-H reactant solution	Light source	Reduction efficiency	Ref.
BiNPs/g-C ₃ N ₄	40 mg	100 mL, 10 mg L ⁻¹	300 W Xe lamp (λ>420 nm)	70 min, 90.7 %	This work
AgNPs/g-C ₃ N ₄	100 mg	100 mL, 10 mg L^{-1}	$300 \text{ W Xe} \\ \text{lamp} (\lambda > 420 \\ \text{nm})$	120 min, 83 %	[1]
Urea-derived g- C ₃ N ₄	40 mg	100 mL, 10 mg L ⁻¹	$300 \text{ W Xe} \\ \text{lamp} (\lambda > 420 \\ \text{nm})$	60 min, 79 %	[2]
h-BN/g-C ₃ N ₄	100 mg	100 mL, 10 mg L^{-1}	$300 \text{ W Xe} \\ \text{lamp } (\lambda > 420 \\ \text{nm})$	60 min, 79.7 %	[3]
CQDs/g-C ₃ N ₄	50 mg	100 mL, 10 mg L^{-1}	$300 \text{ W Xe} \\ \text{lamp} (\lambda > 420 \\ \text{wm})$	240 min, 78.6%	[4]
GQDs/mpg- C ₃ N ₄	50 mg	50 mL,20 mg L- 1	300 W Xe $lamp (\lambda > 400$	120 min, 65%	[5]
N-CNT/mpg- C ₃ N ₄	50 mg	50 mL, 20 mg L^{-1}	$300 \text{ W Xe} \\ \text{lamp} (\lambda > 420)$	240 min, 67.1%	[6]
Mg/O co- decorated g-	100 mg	100 mL, 30 mg L^{-1}	nm) 12 W LED lamp (>400	120 min, 82%	[7]
C ₃ N ₄ Er-doped g-C ₃ N ₄	25 mg	50 mL, 25 mg L^{-1}	35 W xenon lamp	90 min, 82%	[8]
${ m Bi}/lpha - { m Bi}_2 { m O}_3/{ m g} - { m C}_3 { m N}_4$	50 mg	50 mL, 10 mg L ⁻¹	$300 \text{ W Xe} \\ \text{lamp } (\lambda > 420 \\ \text{nm})$	180 min, 92%	[9]
V_2O_5/g - C_3N_4	50 mg	100 mL, 10 mg L^{-1}	$250 \text{ W Xe} \\ \text{lamp}(\lambda > 420 \\ \text{nm})$	120 min, 75.7%	[10]
CoP-HCCN	40 mg	100 mL, 10 mg L^{-1}	500 W Xe $lamp (\lambda > 420$	120 min, 96.7%	[11]
Bi ₂ WO ₆ /g-C ₃ N ₄	50 mg	50 mL, 10 mg L ⁻¹	250 W Xe $lamp (\lambda > 420$	60 min, 73%	[12]
WO ₃ /g- C ₃ N ₄ /Bi ₂ O ₃	100 mg	100 mL, 10 mg L^{-1}	$\begin{array}{c} \text{nm} \\ 300 \text{ W Xe} \\ \text{lamp } (\lambda > 420 \\ \text{nm}) \\ \end{array}$	60 min, 80.2%	[13]

Table S2. Comparison of photocatalytic activity of the $BiNPs/g-C_3N_4$ nanocomposite with various previously reported $g-C_3N_4$ -based photocatalysts for degradation of TC-H.

CQDs: Carbon quantum dots; GQDs: Graphene quantum dots; CoP-HCCN: CoP co-catalyst modified high-crystalline g-C_3N_4 (HCCN).

References

- Z. Ren, F. Chen, K. Wen and J. Lu, Enhanced photocatalytic activity for tetracyclines degradation with Ag modified g-C₃N₄ composite under visible light, *J. Photoch. Photobio A*, 2020, **389**, 112217–112228.
- C. Tian, H. Zhao, J. Mei and S. Yang, Cost-efficient graphitic carbon nitride as an effective photocatalyst for antibiotic degradation: An insight into the effects of different precursors and coexisting ions, and photocatalytic mechanism, *Chem. Asian J.*, 2019, 14, 162–169.
- L. Jiang, X. Yuan, G. Zeng, Z. Wu, J. Liang, X. Chen, L. Leng, H. Wang and H. Wang, Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant, *Appl. Catal. B-Environ.* 2018, 221, 715–725.
- Y. Hong, Y. Meng, G. Zhang, B. Yin, Y. Zhao, W. Shi and C. Li, Facile fabrication of stable metal-free CQDs/g-C₃N₄ heterojunctions with efficiently enhanced visiblelight photocatalytic activity, *Sep. Purif. Technol.*, 2016, **171**, 229–237.
- J. Liu, H. Xu, Y. Xu, Y. Song, J. Lian, Y. Zhao, L. Wang, L. Huang, H. Ji and H. Li, Graphene quantum dots modified mesoporous graphite carbon nitride with significant enhancement of photocatalytic activity, *Appl. Catal. B-Environ.*, 2017, 207, 429–437.
- J. Liu, Y. Song, H. Xu, X. Zhu, J. Lian, Y. Xu, Y. Zhao, L. Huang, H. Ji and H. Li, Non-metal photocatalyst nitrogen-doped carbon nanotubes modified mpg-C₃N₄: Facile synthesis and the enhanced visible-light photocatalytic activity, *J. Colloid Interf. Sci.*, 2017, 494, 38–46.
- X. Wu, M. Fu, P. Lu, Q. Ren and C. Wang, Unique electronic structure of Mg/O codecorated amorphous carbon nitride enhances the photocatalytic tetracycline hydrochloride degradation, *Chinese J. Catal.*, 2019, 40, 776–785.
- G. Li, B. Wang, J. Zhang, R. Wang and H. Liu, Er-doped g-C₃N₄ for photodegradation of tetracycline and tylosin: High photocatalytic activity and low leaching toxicity, *Chem. Eng. J.*, 2020, **391**, 123500–123505.
- D. Chen, S. Wu, J. Fang, S. Lu, G. Zhou, W. Feng, F. Yang, Y. Chen and Z. Fang, A nanosheet-like α-Bi₂O₃/g-C₃N₄ heterostructure modified by plasmonic metallic Bi

and oxygen vacancies with high photodegradation activity of organic pollutants, *Sep. Purif. Technol.*, 2018, **193**, 232–241.

- Y. Hong, Y. Jiang, C. Li, W. Fan, X. Yan, M. Yan and W. Shi, In-situ synthesis of direct solid-state Z-scheme V₂O₅/g-C₃N₄ heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants, *Appl. Catal. B-Environ.*, 2016, 180, 663–673.
- F. Guo, X. Huang, Z. Chen, H. Sun and L. Chen, Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater, *Chem. Eng. J.*, 2020, **395**, 125118–125130.
- 12. H. Che, C. Liu, W. Hu, H. Hu, J. Li, J. Dou, W. Shi, C. Li and H. Dong, NGQD active sites as effective collectors of charge carriers for improving the photocatalytic performance of Z-scheme g-C₃N₄/Bi₂WO₆ heterojunctions, *Catal. Sci. Technol.*, 2018, **8**, 622–631.
- L. Jiang, X. Yuan, G. Zeng, J. Liang, X. Chen, H. Yu, H. Wang, Z. Wu, J. Zhang and T. Xiong, *In-situ* synthesis of direct solid-state dual Z-scheme WO₃/g-C₃N₄/Bi₂O₃ photocatalyst for the degradation of refractory pollutant, *Appl. Catal. B-Environ.*, 2018, 227, 376–385.