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Analysis of TC-H and intermediates

An ultra-performance liquid chromatograph (UPLC, Waters) equipped with a mass 

spectrometer (AB Sciex Triple Quad 5500) was used to evaluate the effect of different types of 

water matrices on low concentration of TC-H during the photocatalytic process. A Waters 

Acquity BEH C18 column (2.1 mm × 50 mm, 1.7 μm) was employed, and the column 

temperature was set at 35 °C. The mobile phase was a mixture of 0.1% fomic acid in water (A) 

and 0.1% fomic acid in MeOH (B) with a flow rate of 0.4 mL min−1. The injection volume of 

samples was 10 μL.

Analysis of photodegradation intermediates was performed by a high-performance liquid 

chromatograph tandem mass spectrometer (Ultimate 3000 UHPLC-Q Exactive, Thermo 

Scientific, US) with an Eclipse Plus C18 column (100 mm × 4.6 mm, 5 μm). The mobile phase 

was 0.1% formic acid solution (A, 80%) and acetonitrile (B, 20%) at flow rate of 0.5 mL min−1 

with the column temperature of 30 °C. Heated electrospray ionization (HESI) source in positive 

mode was used to estimate the TC-H and intermediates in the range of 50−600 m/z.
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Fig. S1. (a) TEM, (b) HR-TEM, (c) SAED pattern and (d) size distribution of the as-

prepared Bi nanoparticles.

Fig. S2. (a,b) SEM images of the bulk g-C3N4, (c,d) SEM images of the porous g-C3N4 

nanosheets, the insets in (b) and (d) show that the g-C3N4 nanosheet have a larger 

volume than bulk g-C3N4 with the same mass, (e,f) TEM micrographs of g-C3N4 

nanosheets, and the inset in (e) is the SAED pattern of g-C3N4 nanosheets.

S3



Fig. S3. Zeta potential distribution of the exfoliated g-C3N4 nanosheets (a), and Bi 

nanoparticles (b) dispersed in water.

Fig. S4. EDS element mapping analysis of the 10 wt%-BiNPs/g-C3N4 nanocomposite.
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Fig. S5. Electron micrographs of the 2 wt%-BiNPs/g-C3N4 nanocomposite. (a,b) SEM 

micrographs of the sample, (c,d) TEM images of the sample, (e) HR-TEM of the 

surface of nanosheet, (f) SAED pattern of the sample.

Fig. S6. Electron micrographs of the 4 wt%-BiNPs/g-C3N4 nanocomposite. (a) SEM 

and (b) TEM images of the sample, (c) HR-TEM micrograph of the surface of 

nanosheet, (d) the corresponding SAED pattern.
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Fig. S7. Electron micrographs of the 8 wt%-BiNPs/g-C3N4 nanocomposite. (a) SEM 

and (b) TEM micrographs of the sample.

Fig. S8. Electron micrographs of the 12 wt%-BiNPs/g-C3N4 nanocomposite. (a) SEM 

and (b) TEM micrographs of the sample.

Fig. S9. XPS spectrum of N 1s region of the g-C3N4 nanosheet.
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Fig. S10. (a) N2 adsorption-desorption isotherm and (b) pore size distribution profile of 

the g-C3N4 nanosheets and 10 wt%-BiNPs/g-C3N4 nanocomposite.
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Fig. S11. (a) Survey XPS spectrum of the 10 wt%-BiNPs/g-C3N4 nanocomposite after 

photocatalytic degradation reaction. High-resolution XPS spectra of C 1s (b), N 1s (c), 

Bi 4f (d) and O 1 s (e) regions of the sample.
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Fig. S12. pH dependant specification and molecular structure of TC-H under variable 

pH values.

Fig. S13. The total ion chromatograms (TICs) of the photodegradation mixtures at 

different light irradiation time points.
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Fig. S14. Toxicity evaluation of the photodegradation mixtures by 10 wt% BiNPs/g-

C3N4 at different minutes with the initial TC-H concentration of 20 mg L−1.

Fig. S15. Release of bismuth ions during the photocatalytic reaction process.

Table. S1. Kinetic parameters of the photoluminescence decays analysis of the g-C3N4 
and 10 wt%-BiNPs/g-C3N4.

Samples Component Life time (ns) Relative 
percentage (%)

χ2

τ1 2.3355 38.70g-C3N4
τ2 9.1681 61.30

1.021

τ1 1.7998 43.6310 wt%-BiNPs/g-C3N4
τ2 7.5409 56.37

1.217
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Table S2. Comparison of photocatalytic activity of the BiNPs/g-C3N4 
nanocomposite with various previously reported g-C3N4-based photocatalysts for 
degradation of TC-H.

Catalysts Mass of 
catalyst

TC-H reactant 
solution Light source Reduction 

efficiency Ref.

BiNPs/g-C3N4 40 mg 100 mL, 10 mg 
L–1

300 W Xe 
lamp (λ>420 

nm)
70 min, 90.7 % This 

work

AgNPs/g-C3N4 100 mg 100 mL, 10 mg 
L–1

300 W Xe 
lamp (λ>420 

nm)
120 min, 83 % [1]

Urea-derived g-
C3N4

40 mg 100 mL, 10 mg 
L–1

300 W Xe 
lamp (λ>420 

nm)
60 min, 79 % [2]

h-BN/g-C3N4 100 mg 100 mL, 10 mg 
L–1

300 W Xe 
lamp (λ>420 

nm)
60 min, 79.7 % [3]

CQDs/g-C3N4 50 mg 100 mL, 10 mg 
L–1

300 W Xe 
lamp (λ>420 

nm)
240 min, 78.6% [4]

GQDs/mpg-
C3N4

50 mg 50 mL,20 mg L–

1

300 W Xe 
lamp (λ>400 

nm)
120 min, 65% [5]

N-CNT/mpg-
C3N4

50 mg 50 mL, 20 mg 
L–1

300 W Xe 
lamp (λ>420 

nm)
240 min, 67.1% [6]

Mg/O co-
decorated g-

C3N4

100 mg 100 mL, 30 mg 
L–1

12 W LED 
lamp (>400 

nm)
120 min, 82% [7]

Er-doped g-C3N4 25 mg 50 mL, 25 mg 
L–1

35 W xenon 
lamp 90 min, 82% [8]

Bi/α-Bi2O3/g-
C3N4

50 mg 50 mL, 10 mg 
L–1

300 W Xe 
lamp (λ>420 

nm)
180 min, 92% [9]

V2O5/g-C3N4 50 mg 100mL, 10 mg 
L–1

250 W Xe 
lamp(λ>420 

nm)
120 min, 75.7% [10]

CoP-HCCN 40 mg 100 mL, 10 mg 
L–1

500 W Xe 
lamp (λ>420 

nm)
120 min, 96.7% [11]

Bi2WO6/g-C3N4 50 mg 50 mL, 10 mg 
L–1

250 W Xe 
lamp (λ>420 

nm)
60 min, 73% [12]

WO3/g-
C3N4/Bi2O3

100 mg 100 mL, 10 mg 
L–1

300 W Xe 
lamp (λ>420 

nm)
60 min, 80.2% [13]

CQDs: Carbon quantum dots; GQDs: Graphene quantum dots; CoP-HCCN: CoP co-catalyst 
modified high-crystalline g-C3N4 (HCCN).
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