Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2021

## Supporting info for

# A critical evaluation of short columns for estimating the attachment efficiency of engineered nanomaterials in natural soils

Knapp Karin Norrfors<sup>1</sup>, Micic Batka Vesna<sup>2</sup>, Olga Borovinskaya<sup>3</sup>, Frank von der Kammer<sup>2</sup>, Thilo Hoffman<sup>2</sup> and Geert Cornelis<sup>1\*</sup>

<sup>&</sup>lt;sup>1</sup>Department of Soil and Environment, SLU Swedish University of Agricultural Sciences, PO Box 7014, SE-75007 Uppsala, Sweden

<sup>&</sup>lt;sup>2</sup> Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria

<sup>&</sup>lt;sup>3</sup>TOFWERK AG, Schorenstrasse 39, 3645 Thun, Switzerland

## Formulae

#### **Parameters**

Table S1. Symbols, explanation and formulae for parameters used to calculate  $\alpha$ 

|                        | nbols, explanation and formulae for parameter |                                                                                      |
|------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------|
| Symbol                 | Name                                          | Formulae                                                                             |
| t                      | Time                                          |                                                                                      |
| Z                      | Column depth                                  |                                                                                      |
| $\theta$               | Porosity                                      |                                                                                      |
| $	heta_{total}$        | Total porosity                                | $V_{\it added water}$                                                                |
|                        |                                               | 17                                                                                   |
|                        |                                               | V <sub>column</sub>                                                                  |
| $	heta_{eff}$          | Effective porosity                            |                                                                                      |
| $\rho$                 | Bulk density                                  |                                                                                      |
| D                      | Dispersivity                                  |                                                                                      |
| $V_{ m added\ water}$  | Water added to column during packing          |                                                                                      |
| $V_{ m column\ water}$ | Column volume                                 | $\pi L d_{column}^{-2}$                                                              |
| coranni water          |                                               | l                                                                                    |
|                        |                                               | 4                                                                                    |
| L                      | Column length                                 |                                                                                      |
| C                      | Suspended ENM concentration                   |                                                                                      |
| $C_0$                  | Added ENM concentration                       |                                                                                      |
| S                      | ENM concentration attached to soil            |                                                                                      |
| Q                      | Column flow rate                              |                                                                                      |
| U                      | Approach velocity                             | 4Q                                                                                   |
|                        |                                               | $\frac{1}{\pi d^{2}} \frac{2}{\theta}$                                               |
|                        |                                               | $\pi d_{column}^{2} \theta$                                                          |
| $d_p$                  | ENM diameter                                  |                                                                                      |
| $d_c$                  | Collector diameter (grain size)               |                                                                                      |
| $d_{10}$               | Diameter than which 10 % of soil volume       |                                                                                      |
|                        | has lower grain size                          |                                                                                      |
| $d_{50}$               | Diameter than which 50 % of soil volume       |                                                                                      |
|                        | has lower grain size                          |                                                                                      |
| A                      | Hamaker constant                              |                                                                                      |
| k                      | Boltzmann constant                            |                                                                                      |
| T                      | Temperature                                   |                                                                                      |
| μ                      | Viscosity                                     |                                                                                      |
| $\rho_p$               | Density of the particle                       |                                                                                      |
| $\rho_f$               | Density of the fluid                          |                                                                                      |
| g                      | Gravitational acceleration                    |                                                                                      |
|                        | Diffusion coefficient of the particle         | kT                                                                                   |
| $D_{ m diff}$          | Diffusion coefficient of the particle         | l                                                                                    |
|                        |                                               | $3\pi\mu d_p$                                                                        |
| γ                      |                                               | $\sqrt[3]{1-\theta}$                                                                 |
| $A_s$                  |                                               | $2(1-\gamma^5)$                                                                      |
|                        |                                               | 2 2 2 2 5 2 6                                                                        |
| 37                     |                                               | $ \frac{2(1-\gamma^5)}{2-3\gamma+3\gamma^5-2\gamma^6} $ $ \frac{d_p}{d_c} $ $ Ud_c $ |
| $N_R$                  | Aspect ratio                                  | $\left  \frac{u_p}{} \right $                                                        |
|                        |                                               | $d_c$                                                                                |
| $N_{Pe}$               | Peclet number                                 | $Ud_{\alpha}$                                                                        |
| - 1 Pe                 | 1 color mannoon                               |                                                                                      |
|                        |                                               | $D_{diff}$                                                                           |
| $N_{vdw}$              | Van der Waals number                          | A                                                                                    |
|                        |                                               | $\overline{kT}$                                                                      |
| $N_A$                  | Attraction number                             | A                                                                                    |
| - 'A                   |                                               | l                                                                                    |
|                        |                                               | $3\pi\mu d_p^2 U$                                                                    |
| $N_G$                  | Gravity number                                | $d_p^2(\rho_p - \rho_f)g$                                                            |
|                        |                                               |                                                                                      |
| 3.7                    | T 1 1                                         | 18µ <i>U</i> 4                                                                       |
| $N_{LO}$               | London number                                 | $\left(\frac{4}{3}N_A\right)$                                                        |
|                        |                                               | 3 4                                                                                  |

| <b>N</b> 7 | 1         |
|------------|-----------|
| $IV_{Gi}$  | 1         |
|            |           |
|            | $N_c + 1$ |
|            | G · -     |

#### Models

1. Tufenkji and Elimelech (2004)¹ (Abbreviation: "TE")

$$\begin{split} &\eta_0 = 2.4 A_s^{1/3} N^{-0.081} N_{Pe}^{-0.715} N_{vdw}^{0.052} + 0.55 A_s N_R^{1.676} N_A^{0.125} + 0.22 N_R^{-0.24} N_G^{1.11} N_{vdw}^{0.053} \\ &k = \frac{3(1-\theta)U}{2d\theta} \eta_0 \alpha \end{split}$$

2. Ma et al. (2009)<sup>2</sup> as corrected in <sup>3</sup> (Abbreviation: "MA2010")

$$\begin{split} &\eta_0 = \gamma^2 \Big[ 2.3 A_s^{1/3} N^{-0.028} N_{Pe}^{-0.66} N_A^{0.052} + 0.55 A_s N_R^{1.8} N_A^{0.15} + 0.2 N_R^{-0.047} N_G^{1.1} N_{Pe}^{0.053} N_A^{0.053} \Big] \\ &k = \frac{3(1-\theta)U}{2d_c \theta} \eta_0 \alpha \left[ \frac{3-\theta}{3-3\theta} - \frac{2(3-\theta)}{\pi(3-3\theta)} \cos^{-1} \left( \frac{3-3\theta}{3-\theta} \right)^{1/2} + \frac{2}{\pi \sqrt{2\left( \frac{3-\theta}{3-3\theta} \right)^{1/2} - 1}} \right] = \frac{3(1-\theta)U}{2d_c \theta} \eta_0 \alpha f(\theta) \end{split}$$

where  $f(\theta)$  a function of the porosity

3. Long and Hilpert <sup>4</sup> (Abbreviation: "LH")

$$\eta_0 = 15.56 \frac{(1-\theta)^3}{\theta^2} N_R^{0.19} N_{Pe}^{-0.65} + 0.55 A_s N_R^{1.675} N_A^{0.125} + 0.22 N_R^{-0.24} N_G^{1.11} N_{vdw}^{0.053}$$

$$k = \frac{3(1-\theta)U}{2d_c\theta}\eta_0\alpha$$

4. Nelson and Ginn<sup>5</sup>

$$\begin{split} &\eta_0 = \gamma^2 \bigg[ 2.4 A_s^{1/3} \bigg( \frac{N_{Pe}}{N_{Pe} + 16} \bigg) N_{Pe}^{-0.68} N_{Lo}^{0.015} N_{Gi}^{0.8} + A_s N_R^{15/8} N_{Lo}^{1/8} + 0.7 N_R^{-0.05} N_G \frac{N_{Gi}}{N_{Gi} + 0.9} \bigg] \\ &k = \frac{3(1-\theta)^{1/3} U}{2d_c \theta} \eta_0 \alpha \end{split}$$

Ma et al. (2013)<sup>6</sup> (Abbreviation: "MA2013")

$$\eta_0 = \gamma^2 \left[ \frac{8 + 4(1 - \gamma^{1/3}) A_s^{1/3} N_{Pe}^{1/3}}{8 + (1 - \gamma) N_{Pe}^{0.97}} N_{Lo}^{0.015} N_{Gi}^{0.8} N_R^{0.028} + A_s N_R^{15/8} N_{Lo}^{1/8} + 0.7 N_R^{-0.05} N_G \frac{N_{Gi}}{N_{Gi} + 0.9} \right]$$

$$k = \frac{3(1 - \theta)U}{2d \theta} \eta_0 \alpha f(\theta)$$

Derivation of model 1 for Hemisphere-in-cell geometry (used in Ma et al. (2010)<sup>3</sup> and Ma et al. (2013)<sup>6</sup>)

By definition, the single-collector contact efficiency  $\eta$  is<sup>7</sup>

$$\eta = \frac{I}{AUC}$$
 (eq. S1)

With I the particle removal rate per collector, A the projected area of the collector including the fluid shell and C the local dispersed concentration of particles. In the case of a sphere-in-cell geometry,  $A = \pi d_c^2/4$  but for the hemisphere-in-cell geometry<sup>3</sup>

$$A = \frac{\pi d_c^2}{4} f(\theta) \quad \text{(eq. S2)}$$

where  $f(\theta)$  was defined earlier. The macroscopic particle removal is obtained by multiplying the removal rate by one collector with the number of collectors per control volume  $N_c^3$ :

$$N_c = \frac{6(1-\theta)}{\pi d_c^3} A_c dz$$
 (eq. S3)

where  $A_c$  is the surface perpendicular to the flow direction and z is the flow direction. The overall particle removal in the control volume is given by combining eqs. S1 and S2 to obtain the removal by one collector and multiplying this with  $N_c$  (eq. S3):

$$I = \frac{3(1-\theta)\eta f(\theta)UC}{2d_c}A_c dz$$
 (eq. S4)

Considering I=-QdC with Q the volumetric flow, equal to  $UA_c$ , we can reorganise and integrate eq. S4 as

$$\int_{C_0}^{C_f} \frac{dC}{C} = -\frac{3(1-\theta)\eta f(\theta)}{2d_c} \int_{0}^{L} dz$$
 (eq. S5)

where  $C_0$  is the concentration at the column inlet,  $C_f$  is the particle concentration at the column outflow and L is the column length. Considering that  $\eta = \alpha \eta_0$ , Eq. S5 solves to

$$\alpha_{continuous} = -\frac{2d_c}{3(1-\theta)f(\theta)L\eta_0} lnR$$
 (eq. S6)

with *R* the recovery.

## Soil properties

*Table S2: Properties of the soils used in the experiments as well as the methods used to obtain these properties.* 

| Soil property          | ites of the sous used in the expert | Lufa 2.2 | Woburn | Dorsett | Chiltern | North Wales | Method                                             | Ref           |  |
|------------------------|-------------------------------------|----------|--------|---------|----------|-------------|----------------------------------------------------|---------------|--|
| рН                     |                                     | 6.49     | 6.41   | 4.08    | 7.63     | 4.77        | Water                                              | 8             |  |
| Tantana                | Sand                                | 67.25    | 75.56  | 91.8    | 29.5     | 57.7        |                                                    |               |  |
| Texture                | Silt                                | 17.51    | 11.81  | 4.7     | 46.8     | 29.7        | Stokes settling                                    | 8             |  |
| (weight %)             | Clay                                | 15.23    | 12.62  | 3.5     | 23.7     | 12.6        | 1                                                  |               |  |
| Total organic ca       | arbon (weight %)                    | 1.53     | 0.61   | 2.18    | 3.26     | 9.63        | Leco Trumac CN analyser                            | 8             |  |
| Cation exchange        | e capacity (cmol kg <sup>-1</sup> ) | 13.3     | 13.3   | 7.83    | 22.94    | 33.32       | Ammonium acetate extraction                        | 9             |  |
| 7 notantial (m)        | 7)                                  | -25.3    | -27.5  | -43.7   | -24      | -25.9       | Electrophoretic mobility $(\zeta_{n.d.})$          |               |  |
| $\zeta$ -potential (mV | <b>()</b>                           | -14.4    | -15.2  | -23.9   | -2.7     | -6.3        | Streaming potential ( $\zeta_{\text{dispersed}}$ ) |               |  |
| 1 ()                   |                                     | 69.2     | 104.4  | 47.1    | 35.9     | NA*         | Dry-sieving                                        | Coo main tout |  |
| $d_{10}$ ( $\mu$ m)    |                                     | 45.0     | 26.3   | 47.2    | 8.7      | 43.7        | Mastersizer                                        | See main text |  |
| 1 ()                   |                                     | 184.2    | 200.4  | 201.9   | 482.6    | 249.8       | Dry-sieving                                        |               |  |
| $d_{50}$ ( $\mu$ m)    |                                     | 207.3    | 211.0  | 221.0   | 141.3    | 279.7       | Mastersizer                                        |               |  |
| Amamhana Ea            | Al and Fe                           | 1097.4   | 2706.9 | 208.2   | 1123.5   | 1588.9      |                                                    |               |  |
| Amorphous Fe,          |                                     | 415.8    | 379.6  | 145.5   | 1471.9   | 787.0       | Oxalate extraction                                 | 10            |  |
| Mn minerals (m         | Mn                                  | 120.1    | 130.0  | 0.8     | 259.6    | 27.4        | 1                                                  |               |  |
| Quartz (weight         | %)                                  | 78.8     | 88.2   | 91.8    | 10.8     | 72.3        |                                                    |               |  |
| K-feldspar (wei        | ght %)                              | 9.1      | 0.4    | 0       | 0.3      | 1           | 1                                                  |               |  |
| Plagioclase (we        | ight %)                             | 2.1      | 0.9    | 0.3     | 0.6      | 0.7         | 1                                                  |               |  |
| Calcite (weight        | %)                                  | 0.5      | 0.1    | 0.1     | 75.7     | 0           | 1                                                  |               |  |
| Aragonite (weig        | ght %)                              | 0        | 0      | 0       | 1.6      | 0           |                                                    |               |  |
| Goethite (weigh        | nt %)                               | 0.9      | 3.4    | 0.5     | 0.5      | 0.3         | XRPD analysis                                      | 11            |  |
| Illite (weight %)      | )                                   | 1.2      | 0.6    | 0.3     | 0.0      | 2.1         | 1                                                  |               |  |
| Kaolinite (weig        | ht %)                               | 0.5      | 0.4    | 0.2     | 0.0      | 0.5         |                                                    |               |  |
| Chlorite (weigh        | t %)                                | 0.1      | 0.0    | 0.0     | 0.0      | 0.0         |                                                    |               |  |
| 2:1 clays (weigh       | nt %)                               | 2.8      | 3.6    | 0.4     | 6.2      | 2.2         | 7                                                  |               |  |
| Amorphous (we          | eight %)                            | 4        | 2.4    | 6.4     | 4.3      | 20.8        | 1                                                  |               |  |

<sup>\*</sup> Not available because a negative  $d_{10}$  was calculated from the available dry sieving data

Some additional results on soil properties are shown below such as the boxplots of total and effective variance for each of the individual soils (Figure S1), a comparison of some soil properties (Figure S2), and a comparison of the grain size distribution obtained using laser scattering and dry sieving (Figure S3).

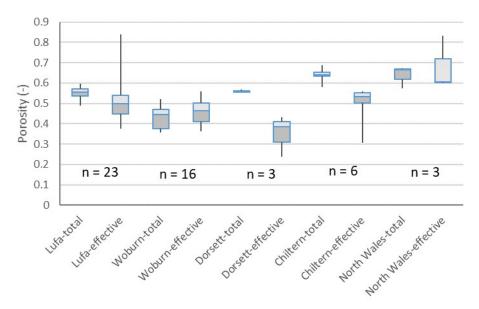



Figure S1. Boxplots of total and effective porosity for different soils showing also the number of data points for which these boxplots were calculated

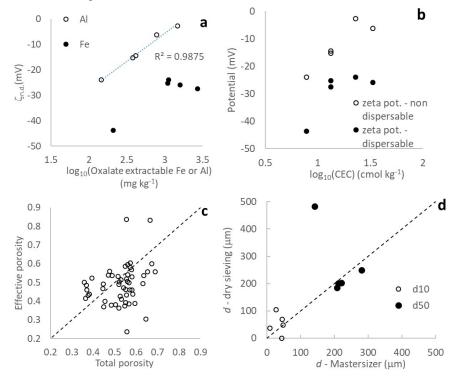



Figure S2. Interrelation of soil properties. a)  $\zeta$ -potential of the non-dispersable soil fraction versus oxalate extractable Al or Fe; b) CEC versus  $\zeta$ -potentials c) Effective versus total porosity showing also the 1:1 relation and d)  $d_{10}$  or  $d_{50}$  determined using light scattering versus using dry sieving also showing the 1:1 relation.

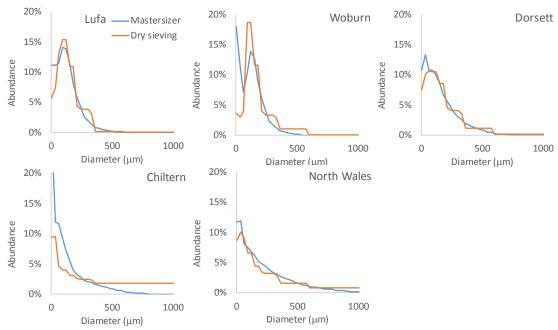



Figure S3. Grain size distributions determined using either mastersizer or dry sieving. Note that the distribution were rebinned to the same bin size of 50  $\mu$ m.

### spTOF-ICP-MS analysis

Table S3 shows the results of the spTOF-ICP-MS analysis that were done using 20 and 80 nm Au ENMs and saturated solutions of five soils. Shown are how much the saturated soil solution was diluted prior to mixing with diluted 20 nm or 80 nm Au suspensions and how many of the detected particle events of Al, Si, Ti, Mn and Fe, elements commonly found in mobile colloids, overlap with particle events of Au.

Table S3. Fraction of detected Au particle events that co-occur with particle events of common elements found in mobile colloids.

| mobile colloids. | Dilution      | ,           | % of | narticl | e even | ts overla | anning | with Au |
|------------------|---------------|-------------|------|---------|--------|-----------|--------|---------|
| Au ENM diameter  | Soil solution | Soil        | Al   | Si      | Ti     | Mn        | Fe     | Sum     |
| 20               | 100           | Chiltern    | 0    | 0       | 0      | 0         | 0      | 0       |
| 20               | 100           | Chiltern    | 0    | 0       | 0      | 0         | 0      | 0       |
| 20               | 100           | Dorset      | 0    | 0       | 0      | 0         | 0      | 0       |
| 20               | 10            | Lufa        | 0    | 0       | 0      | 20        | 40     | 60      |
| 20               | 100           | Lufa        | 10   | 0       | 0      | 0         | 10     | 20      |
| 20               | 100           | North Wales | 4    | 17      | 0      | 0         | 8      | 29      |
| 20               | 100           | Woburn      | 0    | 0       | 0      | 0         | 13     | 13      |
| 20               | 100           | Woburn      | 0    | 0       | 0      | 0         | 0      | 0       |
| 20               | 100           | Woburn      | 0    | 0       | 0      | 0         | 0      | 0       |
| 20               | 1000          | Woburn      | 0    | 0       | 0      | 0         | 29     | 29      |
| 80               | 100           | Chiltern    | 0    | 0       | 0      | 0         | 0      | 0       |
| 80               | 100           | Chiltern    | 2    | 8       | 0      | 0         | 0      | 10      |
| 80               | 200           | Chiltern    | 3    | 7       | 1      | 0         | 2      | 13      |
| 80               | 10            | North Wales | 0    | 1       | 0      | 0         | 2      | 3       |
| 80               | 100           | North Wales | 0    | 1       | 0      | 0         | 1      | 2       |
| 80               | 100           | North Wales | 0    | 4       | 1      | 0         | 1      | 6       |
| 80               | 10            | Woburn      | 1    | 4       | 0      | 0         | 3      | 7       |
| 80               | 10            | Woburn      | 0    | 4       | 0      | 0         | 8      | 13      |
| 80               | 10            | Woburn      | 1    | 1       | 0      | 0         | 4      | 5       |
| 80               | 10            | Woburn      | 1    | 1       | 0      | 0         | 5      | 7       |
| 80               | 100           | Woburn      | 1    | 3       | 0      | 0         | 5      | 9       |
| 80               | 100           | Woburn      | 1    | 1       | 0      | 0         | 4      | 6       |

Figure S4 shows how the observed % of coincidences of Au with other elements (last column in Table S3) as a function of predicted fraction of coincidences in case of random arrival that was calculated as the joint (empirical) probability of a particle event occurring together with a Au particle event, summed over all elements other than Au. Most predicted probabilities are higher than the observed fractions, suggesting that very few detected coincidences are in fact heteroaggregates.




Figure S4. Total predicted probability of random coincidences of Au particle events as a function of observed fraction of total coincidences. The 1:1 relation is indicated as well.

#### Examples of BTC and associated fits

All figure below show experimental breakthrough curves (BTCs) and fitted models of inert tracer conductivity data on the left and ENM BTCs and fitted models on the right. All conductivity and concentration data is normalised (divided by input conductivity or ENM concentration). Elution time was recalculated into number of eluted pore volumes that were calculated using the effective porosity as deducted from inter tracer model fitting. The fitted model in the case of the inert tracer is a zero interaction model, whereas the three models that were fitted to ENM BTCs using Hydrus 1D are shown, i.e. a model assuming irreversible attachment only ("Attach"), a model assuming only straining ("Straining") and a model assuming that types of attachment sites exist where either irreversible or reversible sorption occurs ("2-sites").

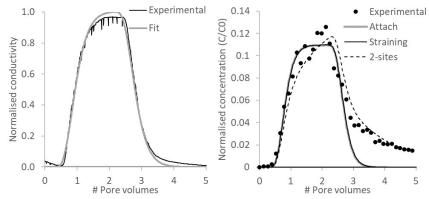



Figure S5. 23.22 mg kg<sup>-1</sup> 20 nm Au ENMs eluting from a Lufa 2.2 soil column.

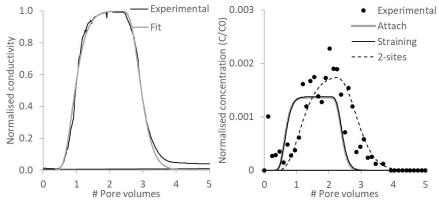



Figure S6. 33.95 mg kg<sup>-1</sup> 20 nm Au ENMs eluting from a Woburn soil column.

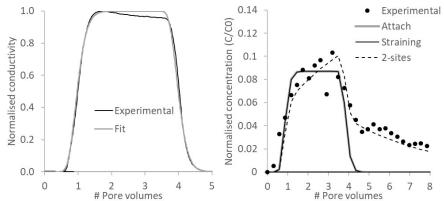



Figure S7. 2.65 mg kg<sup>-1</sup> 80 nm Au ENMs eluting from a Dorsett soil column.

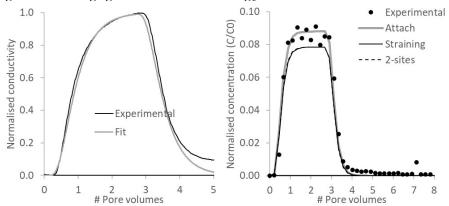



Figure S8. 1.66 mg kg<sup>-1</sup>  $Ag_2S$  ENMs eluting from Chiltern soil columns. The 2 sites model overlaps with the straining model.

#### PLS1 Analysis

PLS is a more appropriate regression analysis than multiple linear regression in cases such as in the current study where many, often intercorrelating, predictor variables exist versus a relatively low (here n = 52) number of observations. The PLS approach is termed PLS1 because, in this case, there is only a single response variable y. In PLS1, the X(nxp) matrix of predictor values and a response vector y(nx1) are expressed in terms of a number (l) of latent variables, sometimes also called principal components in analogy with PCA, according to the following equations:

$$X = TP^{t} + E$$
 Equation S1  
 $y = Tb + f$  Equation S2

Note that matrices are denoted using capital letters, whereas vectors are denoted using lower-case letters. In the equation above, the pxl matrix P describes the latent X-variables, called **loadings**, the **scores** are contained in the nxl matrix T and E(nxp) represents random errors. The y vector is related to the loadings via the regression coefficient vector  $b(1 \times l)$  with some residual f. It is the purpose of PLS, given a number of latent variables l, to find the weights W(pxl) for which the scores T = XxW so that for each latent variable  $t_a$ , i.e. each column a of T and row a of P, the covariance between y and  $t_a$  is maximal. An estimated  $X_{est} = t_a p_a$ ' is then subtracted from E producing a new variable  $X_{a+1}$  for which the procedure is repeated producing a new latent variable (and thus a new column, reps. Row for T and P). This procedure is repeated until the set value of l is reached or E equals the zero matrix.

Prior to PCA and PLS, all predictor and response variables were logarithmically (base 10) transformed if skewness was larger than 1 (Table S4). If skewness was larger than 0.5, transformation was only done if this operation reduced skewness. The untransformed variable was also used when logarithmic or any other (arcsin, square root) transformation did not result in any improvement in skewness. Transformed variables were subsequently centered and rescaled producing *z*-scores.

Table S4. Independent variables and how these were transformed prior to PLS1 analysis.

| Independent Variables  | Transformation    | Skewness of transformed variable |
|------------------------|-------------------|----------------------------------|
| Column length          | None              | 0.35                             |
| Approach velocity      | $Log_{10}$        | -0.07                            |
| Effective porosity     | $Log_{10}$        | -0.30                            |
| Total porosity         | None              | -0.47                            |
| Dispersivity           | $Log_{10}$        | 0.78                             |
| ENP size               | None              | 0.38                             |
| ENP concentration      | $Log_{10}$        | 0.20                             |
| pH*                    | None              | 1.38                             |
| Sand content*          | None              | -1.14                            |
| Clay content           | None              | 0.10                             |
| $d_{10}$ (Mastersizer) | None              | -0.23                            |
| $d_{50}$ (Mastersizer) | None              | -0.24                            |
| Total carbon           | $Log_{10}$        | 0.76                             |
| Sdispersed*            | None              | -3.40                            |
| ζ <sub>n.d.</sub>      | None              | 0.78                             |
| Oxalate extractable Fe | None              | 0.47                             |
| Oxalate extractable Al | Log <sub>10</sub> | 0.78                             |

<sup>\*</sup> No transformation resulted in reduced skewness

The optimal number of latent variables *l* was found in this study by removing one observation from the data set and then predicting the response for this variable based on a PLS analysis with *l* latent variables of the remaining experiments. Predicted variables for all experiments can thus be obtained and a mean squared error of prediction (MSEP) with observed variables can thus be obtained as a function of *l*. The optimal *l* was thus the number where the highest MSEP was found.

p (the number of predictor variables) was also optimized because a high number tends to spoil PLS analyses reducing their consistency and introducing unnecessary variance. In a first step, intercorrelating variables were divided in groups based on their PCA scores and if a physical explanation could be found for the observed covariance. One predictor variable representative for each group was retained. A PLS analysis was subsequently run with the remaining predictors and the variable importance in projection (VIP) of each variable was then calculated according to equation S3.

$$VIP_{j} = \frac{\left[p\sum_{k=1}^{l} \left[SS_{k} \left(\frac{w_{jk}}{\|w_{k}\|}\right)^{2}\right]}{\sum_{k=1}^{l} SS_{k}}\right]$$

Equation S3

Here, p is the number of predictor variables, l is the number of latent variables, SS is the sum of squares relative to the k<sup>th</sup> latent variable calculated as  $b_k^2 t_k^2$  where  $b_k$  and  $t_k$  are the predictor scores and response loadings, respectively.  $w_{jk}$  is the weight of the j'th predictor variable,  $||w_k||$  is the Euclidian norm of the weight vector of the k<sup>th</sup> latent variable. Variables having VIP < 1 were removed and PLS1 was repeated, including optimizing the number of latent variables, with the z-scores of selected variables.

Table S5 summarizes the results of the PLS1 analysis, showing the % variance explained by each latent variable that was retained after cross validation and selection of predictor variables.

Table S5 summary of the PLS1 results including for each model, the number of retained data points, the optimal number of components (latent variables), the total % of the variance explained and the weights different variables have on the first latent variable.

|           | 1        | City        | 1          |    | i aijjeren | 1              | 1            |       |           |          |               |              |             |                |                  |                                                 |       |       |           |           |          |
|-----------|----------|-------------|------------|----|------------|----------------|--------------|-------|-----------|----------|---------------|--------------|-------------|----------------|------------------|-------------------------------------------------|-------|-------|-----------|-----------|----------|
|           |          | l c         |            |    |            |                |              | W     | /eights c | on first | comp b        | y NM a       | nd soil pro | ps             |                  | Weights on first comp by operational parameters |       |       |           |           |          |
| ≥-        | <u>5</u> | <u>.</u> g  |            |    | Total      | # com-         |              |       |           |          |               | <i>a</i> .   |             |                |                  |                                                 |       |       |           |           |          |
| Porosity  | Diameter | Correlation | Model      | n  | variance   | 200            |              |       |           |          |               | Zeta         | Streaming   | Oxalate        | Oxalate          | Column                                          |       |       |           | Dis-      | Approach |
| ਮੁ        | lai.     | E           | 🕺          |    |            | po-            | NM size      | pН    | Sand      | Clay     | TOC           | Poten-       |             |                |                  |                                                 | CO    | dc    | $\theta$  |           |          |
| <u>~</u>  | Ä        | 2           |            |    | explained  | nents          |              |       |           | ,        |               |              | Potential   | Fe             | Al               | length                                          |       |       |           | persivity | velocity |
|           |          |             |            |    |            |                |              |       |           |          |               | tial         |             |                |                  |                                                 |       |       |           |           |          |
|           |          |             | Continuous | 34 | 26%        | 1              | 0.059        | 10    | 0         | 10       | 0             | 10           | 0           | 0              | 10               | 0                                               | 0 080 | 0.081 | 0         | 0         | 0.057    |
|           |          |             |            | 34 | 27%        | 1 1            | 0.059        | 0     | 0         | 0        | o             | 0            | 0           | 0              | l o              | 0                                               | 0 081 | 0.079 | l o       | 0         | 0.058    |
|           |          | ſτì         | Pulse      | 47 | 42%        | 1              |              | 0.029 |           |          | -0.036        | 0 030        | 0           | 1 1            | 1 1              | 1 1                                             |       | 0.033 | 0         | 1 1       | 0.034    |
|           |          | 日日          | Attachment |    |            | 2              | 0            | _     | 0         | 0        | _             |              | 1 1         | 0              | 0                | 0.045                                           | 0 045 | _     | l 1 -     | 0         |          |
|           |          |             | Straining  | 47 | 36%        | 1              | 0            | 0.033 | 0         | 0        | -0.043        | 0 028        | 0           | 0              | 0                | 0.052                                           | 0 043 | 0     | 0         | 0         | 0.034    |
|           |          |             | 2-sites    | 44 | 8%         | 1              | 0            | 0     | 0         | 0        | 0.054         | 0            | 0           | <b>-0</b> .044 | 0                | 0                                               | 0 048 | 0,058 | 0.052     | 0         | 0        |
|           |          |             | Continuous | 34 | 28%        | 3              | 0            | 0     | 0         | 0        | 0             | 0            | 0           | 0              | 0                | 0                                               | 0.078 | 0.080 | 0.050     | 0         | 0.060    |
|           |          |             | Pulse      | 34 | 39%        | 4              | 0            | 0     | 0         | 0        | 0             | 0            | 0           | 0              | 0                | 0                                               | 0 079 | 0.078 | 0.050     | 0         | 0.061    |
|           |          | LH          | Attachment | 47 | 49%        | 2              | 0            | 0     | 0         | 0        | 0             | 0 040        | 0           | 0              | 10               | 0.039                                           | 0 045 | 0.041 | 0.051     | 0         | 0.037    |
|           |          | コ           |            | 47 | 33%        | 2              | 0            | 0.030 | 0         | 0        | -0.032        | 0 035        | 0           | 0              | l o              | 0.045                                           | 0 041 | 0     | 0 039     | 0         | 0.035    |
|           |          |             | Straining  |    |            |                | 1 1          | L.    |           | 1 1      | 1 -7          |              |             | 1 1 -          | 1 1              | -                                               |       | 1 8   |           | 1 1       |          |
|           |          |             | 2-sites    | 44 | 11%        | l l            | 0            | 0     | 0         | 0        | 0.054         | 0            | 0           | <b>10</b> .041 | 0                | 0                                               | 0 039 | 0.055 | 0.067     | 0         | 0        |
|           | 0        | _           | Continuous | 34 | 26%        | 1              | 0.058        | 0     | 0         | 0        | 0             | 0            | 0           | 0              | 0                | 0                                               | 0.080 | 0.081 | 0         | 0         | 0.058    |
|           | d10      | 듼           | Pulse      | 34 | 27%        | 1              | 0.058        | 0     | 0         | 0        | 0             | 0            | 0           | 0              | 0                | 0                                               | 0.081 | 03079 | 0         | 0         | 0.059    |
|           | Single   | MA2010      | Attachment | 47 | 42%        | 2              | 0            | 0.029 | 0         | 0        | -0.035        | 0 031        | 0           | 0              | 0                | 0.045                                           | 0 045 | 0.034 | 0         | 0         | 0.035    |
|           | 엺        | ΙŽ          | Straining  | 47 | 37%        | 2              | 0            | 0.033 | 0         | 0        | -0.042        | 0 029        | 0           | 0              | 10               | 0.052                                           | 0.043 | 0     | 0         | 0         | 0.034    |
|           | S        | 2           | 2-sites    | 44 | 8%         | <del>-</del>   | 0            | 0     | 0         | 0        | 0.054         | 0            | 0           | <b>-0.043</b>  | 0                | 0                                               | 0 048 | 0.058 | 0.053     | 0         | 0        |
|           |          |             |            | 34 | 24%        | 1              | 0.054        | 0     | 0         | 0        | 0             | 0            | 0           | 0              | l lo             | 0                                               | 0 082 | 0.081 | 0         | 0         | 0.059    |
|           |          |             | Continuous |    |            | 1              |              | 1 1   |           | 3 -      |               | 3 -          |             | 1 1            | 1 3              | 1 1                                             |       |       | 1 1       | 1 3       |          |
|           |          | rh.         | Pulse      | 34 | 25%        | I              | 0.054        | 0     | 0         | 0        | 0             | 0            | 0           | 0              | 0                | 0                                               | 0 083 | 0.079 | 0         | 0         | 0.060    |
|           |          | S<br>S      | Attachment | 47 | 43%        | 2              | 0            | 0.031 | 0         | 0        | -0.036        | 0 031        | 0           | 0              | 0                | 0.045                                           | 0 045 | 0,031 | 0         | 0         | 0.034    |
|           |          |             | Straining  | 47 | 38%        | 2              | 0            | 0.031 | 0         | 0        | -0.038        | 0 026        | 0           | 0 025          | 0                | 0.047                                           | 0 038 | 0     | 0         | 0         | 0.030    |
|           |          |             | 2-sites    | 44 | 8%         | 1              | 0            | 0     | 0         | 0        | 0.056         | 0            | 0           | <b>-0</b> .043 | 10               | 0                                               | 0 049 | 0.056 | 0.054     | 0         | 0        |
|           |          |             | Continuous | 34 | 20%        | 1              | 0.052        | 0     | 0         | 0        | 0             | 0            | 0           | 0              | 10               | 0                                               | 0 083 | 0.081 | 0         | 0         | 0.060    |
|           |          | <u>6</u>    | Pulse      | 34 | 22%        | Ť              | 0.052        | 0     | 0         | 0        | 0             | 0            | 0           | 0              | 0                | 0                                               | 0 084 | 0.078 | 0         | 0         | 0.061    |
|           |          | <u>S</u>    |            | 47 | 43%        | 2              | 0            | 0.033 | 0         | 0        | -0.036        | 0 032        | 0           | 0              | 0                | 0.046                                           | 0 045 | 0.029 | 0         | 0         | 0.034    |
|           |          | MA2013      | Attachment |    |            |                | 1 1          |       | 1         | 1 2      | I <del></del> | <del>-</del> |             |                | 1 1              |                                                 |       | -     | l i       | 1 1       |          |
| S C       |          | ĮΣ          | Straining  | 47 | 38%        | 2              | 0            | 0.032 | 0         | 0        | -0.038        | 0 026        | 0           | 0 026          | 0                | 0.047                                           | 0.038 | 0     | 0         | 0         | 0.029    |
| Effective |          |             | 2-sites    | 44 | <b>8%</b>  | I              | 0            | 0     | 0         | 0        | 0.057         | 0            | 0           | <b>10.043</b>  | 0                | 0                                               | 0 050 | 0.054 | 0.055     | 0         | 0        |
| l e       |          |             | Continuous | 34 | 26%        | 1              | 0.050        | 0     | 0         | 0        | 0             | 0            | 0           | 0              | 0                | 0.068                                           | 0 069 | 0     | 0         | 0.042     | 0.062    |
| 山         |          |             | Pulse      | 34 | 27%        | 1              | 0,047        | 0     | 0         | 0        | 0             | 0            | 0           | 0              | 0                | 0.068                                           | 0 066 | 0     | 0         | 0.050     | 0.061    |
|           |          | 胃           | Attachment | 47 | 42%        | 2              | 0            | 0.030 | 0         | 0        | -0.035        | 0            | 0           | 0 049          | 0                | 0.050                                           | 0     | 0     | 0         | 0.046     | 0        |
|           |          | -           | Straining  | 47 | 36%        | 1              | 0            | 0.030 | 0         | 0        | -0.038        | 0            | 0           | 0 049          | 10               | 0.050                                           | 0     | 0     | 0         | 0.042     | 0        |
|           |          |             |            | 44 | 8%         | Î              | 0            | 0     | -0.030    | 0        | 0.041         | 0            | 0.043       | 0              | 0.038            | 0                                               | 0     | l o   | 0.035     | 0.030     | 0        |
|           |          |             | 2-sites    | 34 | 34%        | 7              | 0            | 0     | ſ         | 1 1      |               | 0            |             | 0 036          |                  | 0.047                                           | 0 058 | 0     | _         | 0         | 0.060    |
|           |          |             | Continuous |    |            | 3              | 1 1          | -     | 0         | 0        | 0             | -            | 0           |                | 0                |                                                 |       | 1 1   | 0.068     | 1 3       |          |
|           |          |             | Pulse      | 34 | 39%        | 4              | 0            | 0     | 0         | 0        | 0             | 0            | 0           | 0038           | 0                | 0.048                                           | 0 057 | 0     | 0.066     | 0         | 0.059    |
|           |          | 품           | Attachment | 47 | 49%        | 2              | <b>1.039</b> | 0     | 0         | 0        | 0             | 0            | 0           | 0 058          | 0                | 0.055                                           | 0     | 0     | 0 044     | 0.053     | 0        |
|           |          | -           | Straining  | 47 | 34%        | 2              | <b>035</b>   | 0     | 0         | 0        | -0.033        | 0            | 0           | 0 052          | 0                | 0.050                                           | 0     | 0     | 0         | 0.043     | 0        |
|           |          |             | 2-sites    | 44 | 12%        | 1              | 0            | 0     | -0.029    | 0        | 0.045         | 0            | 0.042       | 0              | 0037             | 0                                               | 0     | 0     | 0.055     | 0         | 0        |
|           | _        |             | Continuous | 34 | 26%        | 1              | 0.049        | 0     | 0         | 0        | 0             | 0            | 0           | 0              | 0                | 0.067                                           | 0 069 | 0     | 0         | 0.041     | 0.063    |
|           | d50      | 0           |            | 34 | 27%        | <del>  î</del> | 0.047        | 0     | 0         | 0        | 0             | 0            | 0           | 0              | l o              | 0.068                                           | 0 067 | 0     | 0         | 0.049     | 0.061    |
|           | o o      | MA2010      | Pulse      |    | 42%        | 1 2            |              | 0.030 | - 1       | 3        | 1 3           | 1            | i           | 0.049          | 1 3              |                                                 |       | 0     | 1 1       |           |          |
|           | Single   | 42          | Attachment | 47 |            | 2              | 0            |       | 0         | 0        | -0.035        | 0            | 0           |                | 0                | 0.050                                           | 0     | 1 -   | 0         | 0.046     | 0        |
|           | 注        | ĮΫ          | Straining  | 47 | 37%        | 2              | 0            | 0.030 | 0         | 0        | -0.038        | 0            | 0           | 0 050          | 0                | 0.050                                           | 0     | 0     | 0         | 0.042     | 0        |
|           | "        |             | 2-sites    | 44 | 8%         | 1              | 0            | 0     | -0.030    | 0        | 0.041         | 0            | 0.042       | 0              | 0038             | 0                                               | 0     | 0     | 0.036     | 0.030     | 0        |
|           |          |             | Continuous | 34 | 25%        | 1              | 0.041        | 0     | 0         | 0        | 0             | 0            | 0           | 0 035          | 0                | 0.063                                           | 0 063 | 0     | 0         | 0.040     | 0.056    |
|           |          |             | Pulse      | 34 | 26%        | 1              | 0.038        | 0     | 0         | 0        | 0             | 0            | 0           | 0036           | 0                | 0,063                                           | 0 060 | 10    | 0         | 0.047     | 0.054    |
|           |          | Ŋ           | Attachment | 47 | 43%        | 2              | 0            | 0.029 | 0         | 0        | -0.035        | 0            | 0           | 0 049          | 0                | 0.050                                           | 0     | 0     | 0         | 0.046     | 0        |
|           |          | Z           |            | 47 | 38%        | 2              | 0            | 0.029 | 0         | 0        | -0.038        | 0            | 0           | 0.050          | <del>l l</del> o | 0.050                                           | 0     | l o   | 0         | 0.042     | 0        |
|           |          |             | Straining  | 44 | 8%         | 1              | 0            | L     | -0.030    | 1        | 0.041         | 0            | 0.042       | 0              | 0038             | 0                                               | 0     | 0     | 0.036     | 0.030     | 0        |
|           |          |             | 2-sites    |    |            | 1              | 1 1          | 0     |           | 0        |               |              |             | 1 ;            |                  | 1 ;                                             | 1 ;   | 1 3   |           |           |          |
|           |          | (m)         | Continuous | 34 | 24%        | <u> </u>       | 0.039        | 0     | 0         | 0        | 0             | 0            | 0           | 0 036          | 0                | 0.062                                           | 0 063 | 0     | 0         | 0.039     | 0.057    |
|           |          | ΙĦ          | Pulse      | 34 | 25%        | 1              | 0,036        | 0     | 0         | 0        | 0             | 0            | 0           | 0037           | 0                | 0.062                                           | 0 061 | 0     | 0         | 0.046     | 0.055    |
|           |          | MA201       | Attachment | 47 | 43%        | 2              | 0            | 0.029 | 0         | 0        | -0.035        | 0            | 0           | 0 050          | 0                | 0.050                                           | 0     | 0     | 0         | 0.046     | 0        |
|           |          | Ι¥          | Straining  | 47 | 37%        | 2              | 0            | 0.030 | 0         | 0        | -0.038        | 0            | 0           | 0 050          | 0                | 0.050                                           | 0     | 0     | 0         | 0.042     | 0        |
|           |          | ~           | 2-sites    | 44 | 8%         | 1              | 0            | 0     | -0.030    | 0        | 0.041         | 0            | 0.042       | 0              | 0 038            | 0                                               | 0     | 0     | 0.037     | 0.030     | 0        |
|           |          | L           | 2-3HO3     |    |            |                |              | ,     | 250       |          |               |              |             |                | - Jap 0          |                                                 |       | 1 1   | , <u></u> | 5         | I 1      |

|           |             | ٦,          |                         | Total    |                                | Weights on first comp by NM and soil props |         |       |        |      |        |                        | Weights on first comp by operational parameters |                |               |                  |       |                |                    |                   |                   |
|-----------|-------------|-------------|-------------------------|----------|--------------------------------|--------------------------------------------|---------|-------|--------|------|--------|------------------------|-------------------------------------------------|----------------|---------------|------------------|-------|----------------|--------------------|-------------------|-------------------|
| Porosity  | Diameter    | Correlation | Model                   | n        | Total<br>variance<br>explained | # com-<br>po-<br>nents                     | NM size | pН    | Sand   | Clay |        | Zeta<br>Poten-<br>tial | Streaming<br>Potential                          | Oxalate<br>Fe  | Oxalate<br>Al | Column<br>length | CO    | dc             | θ                  | Dis-<br>persivity | Approach velocity |
|           |             |             | Continuous              | 34       | 26%                            | 1                                          | 0.048   | 0     | 0      | 0    | 0      | 0                      | 0                                               | 0              | 0             | 0.065            | 0 069 | ₩.047          | 0                  | 0.064             | 0.070             |
|           |             |             | Pulse                   | 34       | 27%                            | 1                                          | 0.045   | 0     | 0      | 0    | 0      | 0                      | 0                                               | 0              | 0             | 0.064            | 0 066 | 050            | 0                  | 0.071             | 0.067             |
|           |             | 出           | Attachment              | 47       | 43%                            | 2                                          | 0       | 0     | 0      | 0    | 0      | 0                      | 0                                               | 0 053          | 0             | 0.048            | 0     | 052            | 0                  | 0.054             | 0                 |
|           |             |             | Straining               | 47       | 36%                            | 1                                          | 0       | 0     | 0      | 0    | 0      | 0                      | 0                                               | 0 056          | 0             | 0.050            | 0     | <b>EQ</b> 050  | 0                  | 0.048             | 0                 |
|           |             |             | 2-sites                 | 44       | 8%                             | 1                                          | 0       | 0     | 0.034  | 0    | 0      | 0                      | 0.034                                           | 0              | 0035          | 0.048            | 0 037 | 0              | 0                  | 0.060             | 0.042             |
|           |             |             | Continuous              | 34       | 34%                            | 2                                          | 0       | 0     | 0      | 0    | 0      | 0 008                  | 0                                               | 0              | 0             | 0.058            | 0 066 | ₩042           | 0                  | 0.062             | 0.081             |
|           |             |             | Pulse                   | 34       | 39%                            | 4                                          | 0       | 0     | 0      | 0    | 0      | 0 009                  | 0                                               | 0              | 0             | 0.057            | 0 063 | <b>10</b> 044  | 0                  | 0.067             | 0.077             |
|           |             | LH          | Attachment              | 47       | 48%                            | 2                                          | 0       | 0     | 0      | 0    | 0      | 0                      | 0                                               | 0 052          | 0             | 0.048            | 0     | €0.047         | 0.043              | 0.057             | 0                 |
|           |             |             | Straining               | 47       | 37%                            | 2                                          | ₫.034   | 0     | 0      | 0    | 0      | 0                      | 0                                               | 0 051          | 0             | 0.046            | 0     | <b>±0</b> .043 | 0                  | 0.046             | 0                 |
|           |             |             | 2-sites                 | 44       | 11%                            | 1                                          | 0       | 0     | -0.035 | 0    | 0      | 0                      | 0.034                                           | 0              | 0035          | 0.046            | 0.037 | 0              | 0                  | 0.059             | 0.045             |
| 0         | ਸ           |             | Continuous              | 34       | 26%                            | l l                                        | 0.048   | 0     | 0      | 0    | 0      | 0                      | 0                                               | 0              | 0             | 0.064            | 0 069 | €046           | 0                  | 0.064             | 0.071             |
| ţ         | ğ           | 15          | Pulse                   | 34       | 27%                            | 1                                          | 0.045   | 0     | 0      | 0    | 0      | 0                      | 0                                               | 0              | 0             | 0.064            | 0 066 | 049            | 0                  | 0.070             | 0.068             |
| Effective | Distributed | MA2010      | Attachment              | 47       | 42%                            | 2                                          | 0       | 0     | 0      | 0    | 0      | 0                      | 0                                               | 0 053          | 0             | 0.048            | 0     | 051            | 0                  | 0.054             | 0                 |
| 日日        | lsi         | Σ           | Straining               | 47       | 37%                            | 2                                          | 0       | 0     | 0      | 0    | 0      | 0                      | 0                                               | 0.056          | 0             | 0.050            | 0     | 050            | 0                  | 0.048             | 0                 |
|           | 1           |             | 2-sites                 | 44       | 8%                             | 1                                          | 0       | 0     | -0.035 | 0    | 0      | 0                      | 0.034                                           | 0              | 0035          | 0.048            | 0 037 | 0              | 0                  | 0.060             | 0.042             |
|           |             |             | Continuous              | 34       | 25%                            | 1                                          | 0.043   | 0     | 0      | 0    | 0      | 0                      | 0                                               | 0              | 0             | 0.065            | 0.068 | 049            | 0                  | 0.066             | 0.069             |
|           |             | רז          | Pulse                   | 34       | 27%                            | 1                                          | 0.040   | 0     | 0      | 0    | 0      | 0                      | 0                                               | 0              | 0             | 0.064            | 0.065 | 052            | 0                  | 0.073             | 0.066             |
|           |             | N<br>O      | Attachment              | 47       | 43%                            | 2                                          | 0       | 0     | 0      | 0    | 0      | 0                      | 0                                               | 0 053          | 0             | 0.048            | 0     | 052            | 0                  | 0.054             | 0                 |
|           |             |             | Straining               | 47       | 38%                            | 2                                          | 0       | 0     | 0      | 0    | 0      | 0                      | 0                                               | 0 056          | 0             | 0.050            | 0     | 051            | 0                  | 0.048             | 0                 |
|           |             |             | 2-sites                 | 44       | 8%                             | 1                                          | 0       | 0     | -0.034 | 0    | 0      | 0                      | 0.034                                           | 0              | 0035          | 0.048            | 0.037 | 0              | 0                  | 0.060             | 0.042             |
|           |             | m           | Continuous              | 34       | 24%                            | 1                                          | 0.041   | 0     | 0      | 0    | 0      | 0                      | 0                                               | 0              | 0             | 0.064            | 0 069 | 048            | 0                  | 0.066             | 0.070             |
|           |             | 2013        | Pulse                   | 34       | 25%                            | 1 2                                        | 0.039   | 0     | 0      | 0    | 0      | 0                      | 0                                               | 0              | 0             | 0.064            | 0 065 | 051            | 0                  | 0.072             | 0.067             |
|           |             | MA2         | Attachment              | 47<br>47 | 43%                            | 2                                          | 0       | 0     | 0      | 0    | 0      | 0                      | 0                                               | 0 053          | 0             | 0.048            | 0     | 052            | 0                  | 0.054             | 0                 |
|           |             |             | Straining               |          | 37%                            | 2                                          | 0       | 0     | 0      | 0    | 0      | 0                      | 0                                               | 0.056          | 0             | 0.050            | 0     | 050            | 0                  | 0.048             | 0                 |
|           | -           | -           | 2-sites                 | 44<br>34 | 33%                            | 1                                          | 0       | 0     | 0.034  | 0    | 0      | 0                      | 0.034                                           | 0<br>F0.041    | 0 035         | 0.048            | 0 037 | 0              | 0                  | 0.060             | 0.042             |
|           |             |             | Continuous              | 34       | 35%                            | 2                                          | 0.055   | 0     | _      | 0    | 0      | 0                      | 0                                               | ſ              | 0             | 0                | 0.071 | 0.076          | 0                  | 0                 | 0.052             |
|           |             | m           | Pulse                   | 47       | 44%                            | 2                                          | 0.055   | 0.036 | 0      | 0    | -0.039 | 0                      | 0                                               | 0.040          | 0             | 0.047            | 0.051 | 0.041          | 0                  | 0                 | 0.032             |
|           |             | 胃           | Attachment              | 47       | 36%                            | 1                                          |         | 0.034 | 0      | 0    | +0.040 | 0                      | 0                                               | 0              | 0             | 0.047            | 0.040 | 0              | ±0.032             | 0                 | 0.030             |
|           |             |             | Straining               | 44       | 8%                             | 1                                          | 0.041   | 0.034 | 0      | 0    | 0.056  | 0                      | 0                                               | -0.052         | 0             | 0                | 0.042 | 0.058          | 0                  | 0                 | 0                 |
|           |             | -           | 2-sites                 | 34       | 45%                            | 4                                          | 0:041   | 0     | 0      | 0    | 0      | 0                      | 0                                               | -0.064         | 0             | 0                | 0.057 | 0.080          | 0                  | 0                 | 0.045             |
|           |             |             | Continuous              | 34       | 44%                            | 3                                          | 0:041   | 0     | 0      | 0    | 0      | 0                      | 0                                               | -0.064         | 0             | 0                | 0.058 | 0.078          | 0                  | 0                 | 0.046             |
|           |             | H           | Pulse                   | 47       | 39%                            | 2                                          |         | 0.038 | 0      | 0    | 0      | 0 035                  | 0                                               | 0              | 0             | 0.031            | 0.050 | 0.054          | 0                  | 0                 | 0.038             |
|           |             | 1           | Attachment<br>Straining | 47       | 34%                            | 2                                          |         | 0.037 | 0      | 0    | -0.030 | 0.029                  | 0                                               | 0              | 0             | 0.040            | 0.042 | 0.027          | 0                  | 0.029             | 0.034             |
|           |             |             | 2-sites                 | 44       | 13%                            | 1                                          | 0       | 0     | 0      | 0    | 0.056  | 0                      | 0                                               | -0.053         | 0             | 0                | 0     | 0.052          | 0.034              | 0.025             | 0                 |
|           | 1_          |             | Continuous              | 34       | 33%                            | 2                                          | 0,055   | 0     | 0      | 0    | 0      | 0                      | 0                                               | <b>=0.042</b>  | 0             | 0                | 0 069 | 0.076          | 0                  | 0                 | 0.050             |
|           | Single d10  | 9           | Pulse                   | 34       | 35%                            | 2                                          | 0.055   | 0     | 0      | 0    | 0      | 0                      | Ö                                               | -0.041         | l o           | 0                | 0 070 | 0.074          | 0                  | 0                 | 0.051             |
| Total     | 9           | MA2010      | Attachment              | 47       | 44%                            | 2                                          |         | 0.037 | 0      | 0    | -0.038 | 0                      | 0                                               | 0              | 0             | 0.046            | 0 052 | 0.042          | 0                  | 0                 | 0.037             |
| မိ        | <u>@</u>    | ΙŽ          | Straining               | 47       | 36%                            | ī                                          | 1 ; .   | 0.034 | Ö      | 0    | +0.040 | 0                      | 0                                               | 0              | 0             | 0.047            | 0041  | 0              | +0.031             | 0                 | 0.031             |
|           | SZ          | ≥           | 2-sites                 | 44       | 9%                             | i                                          | 0.041   | 0     | 0      | 0    | 0.056  | 0                      | 0                                               | <b>-0</b> .052 | l o           | 0                | 0 041 | 0.057          | 0                  | 0                 | 0                 |
|           |             |             | Continuous              | 34       | 31%                            | 2                                          | 0.051   | 0     | 0      | 0    | 0      | 0                      | 0                                               | <u>-0</u> .044 | 0             | 0                |       | 0.076          | 0                  | 0                 | 0.051             |
|           |             |             | Pulse                   | 34       | 33%                            | 2                                          | 0.051   | 0     | 0      | 0    | 0      | 0                      | 0                                               | -0.043         | 10            | 0                | 0 071 | 0.074          | 0                  | 0                 | 0.053             |
|           |             | Ŋ           | Attachment              | 47       | 44%                            | 2                                          |         | 0.040 | 0      | 0    | -0.038 | 0                      | 0                                               | 0              | lo            | 0.047            | 0 051 | 0.038          | 0                  | 0                 | 0.036             |
|           |             |             | Straining               | 47       | 36%                            | 1                                          |         | 0.034 | 0      | 0    | -0.038 | 0                      | 0                                               | 0              | 0             | 0.045            | 0 038 | 0              | <del>-0</del> .030 | 0.027             | 0.029             |
|           |             | 1           | 2-sites                 | 44       | 8%                             | 1                                          | 0.038   | 0     | 0      | 0    | 0.059  | 0                      | 0                                               | <b>=0</b> .053 | 0             | 0                | 0 042 |                | 0                  | 0                 | 0                 |
|           |             |             | Continuous              | 34       | 30%                            | 2                                          | 0.049   | 0     | 0      | 0    | 0      | 0                      | 0                                               | <b>-0</b> .044 | 0             | 0                | 0 071 | 0.076          | 0                  | 0                 | 0.051             |
|           |             | MA2013      | Pulse                   | 34       | 32%                            | 2                                          | 0.049   | 0     | 0      | 0    | 0      | 0                      | 0                                               | <b>=0.043</b>  | l o           | 0                | 0 073 | 0.074          | 0                  | 0                 | 0.053             |
|           |             | 18          | Attachment              | 47       | 45%                            | 2                                          |         | 0.041 | 0      | 0    | -0.039 | 0                      | 0                                               | 0              | 0             | 0.047            | 0 051 | 0.036          | 0                  | 0                 | 0.035             |
|           |             | [¥]         | Straining               | 47       | 36%                            | 1                                          |         | 0.034 | 0      | 0    | -0.038 | 0                      | 0                                               | 0              | 0             | 0.045            | 0 038 | 0              | -0.030             | 0.027             | 0.028             |
|           |             | ~           | 2-sites                 | 44       | 8%                             | 1                                          | 0.037   | 0     | 0      | 0    | 0.060  | 0                      | 0                                               | <b>-0</b> .053 | 0             | 0                | 0 044 |                | 0                  | 0                 | 0                 |
| Ь         | 1           | 1           | ~ 01e00                 |          |                                |                                            |         | 1     | 1      | 1    |        | 1                      |                                                 |                |               |                  |       |                | L 1 -              | 1 1               |                   |

| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | <b>-</b>    | ជ        |            |     | Tr _4_1 | и      | Weights on first comp by NM and soil props |       |        |       |        |                 |           |        |        | Weights on first comp by operational parameters |       |         |                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|----------|------------|-----|---------|--------|--------------------------------------------|-------|--------|-------|--------|-----------------|-----------|--------|--------|-------------------------------------------------|-------|---------|-----------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Continuous   34   335   2   0.056   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )<br>Sity  | nete        | latic    | del        | , n | Total   | # com- |                                            |       |        |       |        | Zeta            | G4:       | 0-1-4- | 0-1-4- | C-1                                             |       |         |                       | D:-       | 4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Continuous   34   33%   2   0.05%   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | orc        | ian         | ) Lic    | Mo         | "   |         | _      | NM size                                    | pН    | Sand   | Clay  | TOC    | Poten-          |           |        |        |                                                 | C0    | de      | $\boldsymbol{\theta}$ |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pulse 34 935% 2 2 0033 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | "          | Н           | ರ        |            |     | схришки | псис   |                                            |       |        |       |        | tial            | Potentiai | re     | AI     | lengtn                                          |       |         |                       | persivity | velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |             |          | Continuous | 34  | 33%     | 2      | 0.056                                      | 0     | 0      | 10    | 0      | 0               | 0         | 0      | 10     | 0,061                                           | 0,068 | 10      | 0,000                 | 0,051     | 0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Straining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |             |          |            |     |         | 2      | 0.053                                      | 0     | 0      | 0     | 0      | 0               | 0         |        | 0      |                                                 | 0 065 | 0       | 1 -                   |           | 0.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Straining 47   36%   1   0   0,027   0   0   4,032   0   0   0,040   0   0,040   0   0   0   0,040   0   0   0   0   0,040   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |             | 믵        | Attachment |     |         | 2      |                                            |       | 1      | 1 8 - |        | 1 1 -           |           |        | 1 1    |                                                 | 1 1 - | 1 -3 1  |                       |           | 1 3 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |             |          | Straining  |     |         | 1      |                                            | _     | 1      | 3 -   |        | 1 -             | 1 1       |        | 1 3    |                                                 | 1 1   | 1 3 1   | _                     |           | 1 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Fulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |             |          | 2-sites    |     |         | 1      | 1 1                                        | ;     |        | 1 2   |        | 1 1             |           | 1 ;    |        | }                                               | 1 1 - | 1 3 1   | 1                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ## Attachment   47   33%   2   0   0.083   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |             |          |            |     |         |        |                                            | }     |        | 3 -   |        | 1 3 1           | 1 1       | 1 3    | 1 3 -  | -                                               |       | 1 8 1   | 1 -                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Straining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |             | <br>  T: |            |     |         |        |                                            | 3 1   | 1      | § -   |        | -               | i         | 1 1    | 3      | { -                                             | -     | 1 3 1   | 1 -                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |             | 🗔        |            |     |         |        |                                            |       |        | 3 -   |        |                 |           |        | 1 3    |                                                 | 1 1   |         | -                     |           | į -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Part   Part |            |             |          |            |     |         | 1      | 1 3                                        |       |        | 1     | 1 1-   | 1 1 1           |           | _      |        |                                                 | 1 1   | _       | 1 -                   |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | _           |          |            |     |         | 2      |                                            | 1 1   | ſ      | 1 8 - |        | 1 1 -           |           | 1 1 -  |        |                                                 | 1 1 - | 1 1 1   | 1 -                   |           | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Fig.   Fig.   Attachment   A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 35          | 으        |            |     |         |        |                                            |       | 1      | 0     |        | 0               |           | 1 1    | 1 1    |                                                 |       | 1 5 1   | 0                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | ē           | 8        |            | 47  |         | 2      | 0                                          | 0.030 | 0      | 0     | -0.031 | 0               | 0         | 0.041  | 0      | 0.043                                           | 0     | -0.030  | 0                     | 0.050     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 190         | Ψ¥       |            | 47  |         | 1      | 0                                          | 0.028 |        | 0     | -0.032 | 0               | 0         | 0.040  | 0      | 0 042                                           | 0     | 0       | -0.030                |           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Palse 34 34% 2 00 0027 0 0 0 0 0 0 0 0 0 0 0005 0 0 0 0005 0 0 0 0005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | W           | _        | 2-sites    | 1   |         | 1      | -                                          | 0     | -0.035 | 0     | 0.043  | 0               |           | 1 1    | 0040   |                                                 | I -   | 1 3 1   | 0                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fig.   Fig. |            |             |          | Continuous |     |         |        |                                            | 3     | - 1    | 3     | 1 1    | 3               | i         | 1 1    | 1 3-   |                                                 |       | 1 8 1   | 1 -                   | 0.054     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Straining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |             | ריז      |            |     |         |        | _                                          | 3 - 1 |        |       | -      | 3 -             | 1 1       | 1 1 -  | 1 3    |                                                 |       | 1 3 1   | 4 -                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |             | ×        |            |     |         | 2      |                                            |       |        | 1 1   |        |                 |           |        | 3      |                                                 | l i   | 1 -3    | _                     |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |             |          |            | 1   |         | 1      |                                            | -     | 1      | 8"    |        |                 |           | _      | 1 2    |                                                 | 1 1   | 1 1     |                       |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Place 3.4 34% 2 0045 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |             |          |            |     |         | 7      | 1 1                                        | 1 - 1 | Г      | 1 8 - |        | _               |           | 1 1 -  |        |                                                 |       | 1 1 1   | 1 -                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Attachment 47 44% 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |             | m        |            |     |         |        |                                            |       |        | 8     | 1 :    |                 |           | 1 1    | 1 8    |                                                 |       | 1 3 1   | 1                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pulse   34   35%   2   01056   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |             |          |            |     |         |        |                                            | 1 1   | 1      | 1     | 1 1-   | 1 1 -           |           | 1 1 -  | 1 8    |                                                 |       | 3 -     | 1 -                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pulse   34   35%   2   01056   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |             | ΙŽ       |            |     |         | ī      |                                            |       |        | 1 2 - |        | 1               | 1         |        | 1 1    |                                                 |       | -       | 1                     |           | i -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Pulse 34 34% 2 0 052 0 0 0 0 0 0 0 0 0 055 0 055 0 053 0 0 0 088 0 008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ਾਫ         |             | ~        |            |     | 8%      | 1      |                                            |       | -0.035 | 0     |        | 0               | 0.043     |        | 0040   |                                                 | 0     | 10      | 0                     |           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pulse 34 34% 2 0 052 0 0 0 0 0 0 0 0 0 055 0 055 0 053 0 0 0 088 0 008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [ <u>c</u> |             |          |            | 34  | 33%     | 2      | 0.056                                      | 0     | 0      | 0     | 0      | -0.020          | 0         | 0      | 0      | 0.056                                           | 0.070 | 050     | 0                     |           | 0.071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Straining   47   36%   1   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | `          |             |          |            |     |         | 2      | 0.052                                      | 0     | 0      | 0     | 0      | - <b>Q</b> .016 | 0         | 1 -    | 0      |                                                 | 0.065 |         | 0                     |           | 0.068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2-sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |             | Œ        | Attachment |     |         | 2      | ,                                          | 3     |        | 1 2 - |        | 1 -             |           |        | 1 1 -  |                                                 | 1     |         | 4 <sup>-</sup>        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pulse   34   35%   34   35%   34   35%   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   35%   34   34   34   34   34   34   34   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |             |          |            | I   |         | l      |                                            | -     | 1 -    | 1 3-  | 1 1    |                 |           |        | 1 3    |                                                 | 1 !   | 1 -3    | 1 -                   |           | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Pulse 34 40% 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |             |          |            |     |         | _      |                                            | 1 1   | _      |       |        | 1 1 - 1         |           | 1 1    |        |                                                 | -     |         | 1 -                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Attachment 47 40% 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |             |          |            |     |         |        |                                            | 1 1   |        | £     |        |                 | -         | 1 1    | 1 8    |                                                 |       |         | 1 -                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Straining 47 34% 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |             | ×        |            |     |         |        | 1 1                                        | 1 - 1 | 1      | 18"   | -      | 3               | 1         | 1 1    | 8 -    | I -                                             |       | _       | 1 -                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2-sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |             | 11       |            |     |         |        |                                            | {     | 1 -    | 18 -  | 1 1    | 1 1             |           | 1 1    |        |                                                 | 1 ; - |         | 1                     |           | 1 3 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Continuous 34 33% 2 0058 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |          |            |     |         | 1      |                                            | 1 -   |        | 1 1   | I I -  | 1 1             |           |        |        |                                                 | 1 ;   |         |                       |           | , -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Pulse 34 35% 2 0054 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | <del></del> |          |            |     |         | 2      | 3                                          | 3     | _      | 2     | 0      | 1 1 1           |           | 1 1    |        | 0.053                                           | 1     | 1 3     | 0                     |           | 0.072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Continuous 34 32% 2 0051 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ğ           | 2        |            | 34  |         |        | 0.054                                      | 0     | 0      | 0     | 0      |                 | 0         | 0      | 0      | 0.053                                           |       |         | 0                     | 0.085     | 0.068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Continuous 34 32% 2 0051 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          | ί           | 2        |            |     |         | 2      | 3 - 1                                      | 3 - 1 | 0      | 1 1   | 0      | 1 3 - 1         | 0         | 0.046  | 0      |                                                 | 1 1 - |         | 0                     |           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Continuous 34 32% 2 0051 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ist         | ΜĀ       |            |     |         | 1      |                                            | 1 - 1 |        | 1 1   |        | -               |           |        | 1 1    |                                                 | 1 1   |         |                       |           | 1 3 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Pulse 34 34% 2 0047 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Д           |          | 2-sites    | l . |         | 1      |                                            |       | 1      | 3-    |        | 1 3 - 1         |           |        | -      | ,                                               | 1 1   | 1 1     |                       |           | Name of the last o |
| Attachment 47 44% 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |             |          |            |     |         |        |                                            | 3     |        |       |        |                 |           | 1 1    | 1 1    |                                                 |       | _       | - 1                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Straining 47 36% 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1          |             | לז       |            |     |         |        |                                            | 1     |        | 1 1   |        |                 | 1         | 1      | 1 8    |                                                 |       |         | 1                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2-sites 44 8% 1 0 0 -0035 0.029 0 0 0 0.033 0 0.034 0 0.030 0 0 0 0 0.052 0.030  Continuous 34 32% 2 0.051 0 0 0 0 0 0 0 0 0 0 0 0.053 0.069 0.052 0 0.082 0.071  Pulse 34 34% 2 0.047 0 0 0 0 0 0 0 0 0 0 0 0 0.052 0.055 0 0.088 0.067  Attachment 47 44% 2 0 0 0 0 0 0 0 0 0 0 0 0 0.046 0 0 0.040 0 0.059 0 0.060 0  Straining 47 36% 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.052 0 0.053 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1          |             | ž        |            | 1   |         |        | -                                          | 1 1   | 1      | E     | -      | 1 1 -           | 1 1       |        | 1 1    |                                                 | 1 1   |         | 1 -                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Continuous 34 32% 2 0051 0 0 0 0 0 0 0 0 0 0 0 0 0 053 0 069 0 052 0 0 082 0 071  Pulse 34 34% 2 0047 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1          |             |          |            | 1   |         | 1 1    | 1                                          | - 1   |        | 1 8 - | 1 1-   | 1               |           |        | 3      |                                                 | 1 1   |         | 1                     |           | 1 { - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pulse 34 34% 2 0047 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |             |          | _          |     |         | 2      |                                            |       |        |       |        | 1               |           | 1 1    |        |                                                 | 1 1   | 1 3 - 1 | 1 -                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Attachment 47 44% 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1          |             | 13       |            |     |         |        |                                            |       |        |       |        |                 |           |        | 1      |                                                 |       |         | 1                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Straining 47 36% 1 0 0 0 0 0 0 0 0 0 0052 0 0045 0 0 053 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |             | 8        |            |     |         |        |                                            |       |        | 3 -   |        | -               | 1 1       | 1 1    | 1 1    |                                                 |       |         | 1                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2-sites 44 9% 1 0 0 -0.036 0.029 0 0 0.033 0 0.034 0.029 0 0 0 0.052 0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |             | Ψ.       |            |     |         | 1      | 1                                          | 0     | 0      |       | 0      | 0               |           |        | 0      |                                                 | 0     |         | 0                     |           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1          |             |          | 2-sites    | 44  | 9%      | 1      | 0                                          | 0     | -0.036 | 0.029 | 0      | 0               | 0.033     | 0      | 0 034  |                                                 | 0     | 0       | 0                     | 0.052     | 0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## All metadata

Table S6. All metadata of the column experiments

| Ta | Table S6. All metadata of the column experiments |                  |           |               |           |                   |            |         |               |                   |  |  |  |
|----|--------------------------------------------------|------------------|-----------|---------------|-----------|-------------------|------------|---------|---------------|-------------------|--|--|--|
|    |                                                  | Column<br>length | Flow rate | Total         | effective | NP                | NP<br>size | $C_0$   | mass          | Dis-<br>persivity |  |  |  |
|    | Soil                                             | cm               | mL min-1  | porosity<br>- | porosity  | core              |            | mg kg-1 | recovery<br>- | cm                |  |  |  |
| 1  | Chiltern                                         | 4.6              |           | 0.645         | 0.3049    | Au                | 80         | 3.96    | 0.0594        | 1.214             |  |  |  |
| 2  | Chiltern                                         | 2.7              | 0.4000    | 0.580         | 0.5305    | Au                | 20         | 1.56    | 0.7320        | 0.1487            |  |  |  |
| 3  | Chiltern                                         | 3.3              | 0.4000    | 0.654         | 0.5575    | Ag <sub>2</sub> S | 27         | 2.08    | 0.0214        | 0.6874            |  |  |  |
| 4  | Chiltern                                         | 3.3              | 0.4000    | 0.689         | 0.5582    | Au                | 20         | 1.68    | 0.8607        | 0.3264            |  |  |  |
| 5  | Chiltern                                         | 2.7              | 0.4000    | 0.636         | 0.5366    | Au                | 80         | 1.23    | 1.0703        | 0.4772            |  |  |  |
| 6  | Chiltern                                         | 3.7              | 0.4000    | 0.632         | 0.4939    | Ag <sub>2</sub> S | 27         | 1.66    | 0.0912        | 0.5906            |  |  |  |
| 7  | Dorset                                           | 3.8              | 0.2563    | 0.557         | 0.2365    | Au                | 80         | 2.65    | 0.1411        | 9.80E-02          |  |  |  |
| 8  | Dorset                                           | 3.7              | 0.4000    | 0.566         | 0.3852    | Au                | 20         | 1.10    | 1.0123        | 0.2138            |  |  |  |
| 9  | Dorset                                           | 3.3              | 0.4000    | 0.556         | 0.4324    | Ag <sub>2</sub> S |            | 2.45    | 0.6888        | 0.1143            |  |  |  |
| -  | Lufa 2.2                                         | 6                | 0.4183    | 0.488         | 0.5377    | Au                |            | 23.22   | 0.1401        | 0.3212            |  |  |  |
|    | Lufa 2.2                                         | 5.4              | 0.5522    | 0.560         | 0.5414    | Au                | 80         |         | 0.3697        | 0.3973            |  |  |  |
|    | Lufa 2.2                                         | 4.3              | 0.5564    | 0.561         | 0.5953    | Au                | 80         | 16.46   | 0.6169        | 0.1152            |  |  |  |
|    | Lufa 2.2                                         | 4.2              | 0.5241    | 0.568         | 0.4997    |                   | 20         | 95.92   | 0.6267        | 0.1132            |  |  |  |
|    |                                                  |                  | 0.3730    |               |           | Au                |            | 4.22    |               |                   |  |  |  |
|    | Lufa 2.2<br>Lufa 2.2                             | 3.8              | 0.3730    | 0.579         | 0.5687    | Au                | 80         | 1.65    | 0.6351        | 0.08604           |  |  |  |
| -  |                                                  |                  |           |               | 0.4888    | Au                | 20         | 22.79   |               |                   |  |  |  |
|    | Lufa 2.2                                         | 4.25             | 0.3780    | 0.559         |           | Au                |            |         | 1.0373        | 0.1732            |  |  |  |
|    | Lufa 2.2                                         | 3.5              | 0.3914    | 0.552         | 0.4621    | Au                | 80         | 36.98   | 1.6653        | 0.04795           |  |  |  |
|    | Lufa 2.2                                         | 3.8              | 0.3863    | 0.580         | 0.4602    | Au                | 80         | 8.46    | 2.7883        | 0.08915           |  |  |  |
| _  | Lufa 2.2                                         | 3.9              | 0.3685    | 0.584         | 0.4378    | Au                | 80         | 6.02    | 2.3583        | 0.1259            |  |  |  |
| -  | Lufa 2.2                                         | 4.7              | 0.6000    | 0.542         | 0.4726    | Au                | 20         | 4.61    | 0.9923        | 0.1405            |  |  |  |
|    | Lufa 2.2                                         | 4.7              | 0.6000    | 0.529         | 0.5147    | Au                | 20         | 0.96    | 1.2126        | 0.1136            |  |  |  |
|    | Lufa 2.2                                         | 3.5              | 0.4000    | 0.532         | 0.4115    | Ag <sub>2</sub> S | 27         | 0.83    | 0.9186        | 0.3718            |  |  |  |
| _  | Lufa 2.2                                         | 4.6              | 0.4000    | 0.526         | 0.4266    | Au                | 80         | 1.39    | 1.2222        | 0.2097            |  |  |  |
| 24 | Lufa 2.2                                         | 3.8              | 0.4000    | 0.516         | 0.5325    | Ag <sub>2</sub> S | 27         | 0.99    | 1.1797        | 0.2454            |  |  |  |
| 25 | Lufa 2.2                                         | 4.6              | 0.5230    | 0.571961347   | 0.5798    | Au                | 80         | 12.65   | 0.4892        | 0.08169           |  |  |  |
| 26 | Lufa 2.2                                         | 3.9              | 0.1924    | 0.550248425   | 0.3926    | Au                | 80         | 2.49    | 0.9971        | 0.07876           |  |  |  |
| 27 | Lufa 2.2                                         | 3.9              | 0.4087    | 0.594857515   |           | Au                | 80         | 14.04   | 0.4311        | 0.08378           |  |  |  |
| 28 | Lufa 2.2                                         | 3.4              | 0.2149    | 0.571549742   | 0.4593    | Au                | 20         | 24.01   | 1.2664        | 0.05004           |  |  |  |
| 29 | Lufa 2.2                                         | 3.9              | 0.4218    | 0.546435236   | 0.3747    | Au                | 20         | 17.31   | 0.0276        | 0.1172            |  |  |  |
| 30 | Lufa 2.2                                         | 3.8              | 0.4000    | 0.555829373   | 0.8381    | Au                | 20         | 1.17    | 1.1578        | 0.2137            |  |  |  |
| 31 | Lufa 2.2                                         | 3.8              | 0.4000    | 0.555829373   | 0.5188    | Au                | 20         | 1.17    | 1.2704        | 0.1565            |  |  |  |
| 32 | Lufa 2.2                                         | 4.6              | 0.5564    | 0.54826802    | 0.587     | Au                | 80         | 4.60    | NA            | 0.1474            |  |  |  |
| 33 | North Wales                                      | 4                | 0.4000    | 0.672626987   | 0.60006   | Au                | 80         | 4.50    | 0.4643        | 0.1275            |  |  |  |
| 34 | North Wales                                      | 3.5              | 0.4000    | 0.573         | 0.6047    | Au                | 20         | 1.53    | 1.4618        | 0.1069            |  |  |  |
| 35 | North Wales                                      | 2.8              | 0.4000    | 0.665         | 0.8319    | Ag <sub>2</sub> S | 27         | 1.71    | 0.7328        | 0.06512           |  |  |  |
| 36 | Woburn                                           | 6                | 0.5662    | 0.447         | 0.4928    | Au                | 20         | 20.22   | 0.0050        | 0.3164            |  |  |  |
| 37 | Woburn                                           | 5.7              | 0.5250    | 0.445         | 0.467     | Au                | 20         | 8.79    | 0.0322        | 0.3123            |  |  |  |
| 38 | Woburn                                           | 5.4              | 0.5753    | 0.469         | 0.54      | Au                | 20         | 18.07   | 0.0059        | 0.35              |  |  |  |
| 39 | Woburn                                           | 5.7              | 0.5667    | 0.449         | 0.3694    | Au                | 20         | 0.68    | 0.1974        | 1.113             |  |  |  |
| 40 | Woburn                                           | 5.7              | 0.5615    | 0.394         | 0.5232    | Au                | 80         | 14.41   | 0.0018        | 2.38E-01          |  |  |  |
| 41 | Woburn                                           | 5.5              | 0.6122    | 0.369         | 0.4603    | Au                | 80         | 5.92    | 0.0023        | 0.1535            |  |  |  |

|    |        | I   |        | I     |         |                   |    | I     |        |          |
|----|--------|-----|--------|-------|---------|-------------------|----|-------|--------|----------|
| 42 | Woburn | 5.4 | 0.2177 | 0.369 | 0.4849  | Au                | 20 | 5.27  | 0.0250 | 0.206    |
| 43 | Woburn | 5.6 | 0.4229 | 0.381 | 0.4381  | Au                | 20 | 7.10  | 0.0280 | 0.1834   |
| 44 | Woburn | 5.3 | 0.4103 | 0.376 | 0.4304  | Au                | 80 | 6.67  | 0.2440 | 0.125    |
| 45 | Woburn | 5.9 | 0.1600 | 0.364 | 0.4141  | Au                | 20 | 25.46 | 0.0281 | 0.1214   |
| 46 | Woburn | 5.8 | 0.3703 | 0.358 | 0.501   | Au                | 80 | 8.77  | 0.0004 | 0.1318   |
| 47 | Woburn | 6.3 | 0.6172 | 0.477 | 0.5589  | Au                | 20 | 33.95 | 0.0021 | 2.71E-01 |
| 48 | Woburn | 5.5 | 0.4580 | 0.455 | 0.39999 | Au                | 20 | 35.81 | 2.8710 | 9.88E-02 |
| 49 | Woburn | 3.7 | 0.3386 | 0.519 | 0.3629  | Au                | 80 | 0.09  | 1.0127 | 0.1354   |
| 50 | Woburn | 4.3 | 0.4000 | 0.521 | 0.5032  | Au                | 20 | 0.98  | 0.9998 | 0.07877  |
| 51 | Woburn | 4.1 | 0.4000 | 0.503 | 0.3813  | Ag <sub>2</sub> S | 27 | 1.28  | 0.5075 | 0.1439   |

#### References

- 1. N. Tufenkji and M. Elimelech, Environ. Sci. Technol., 2004, 38, 529-536.
- 2. H. Ma, J. Pedel, P. Fife and W. P. Johnson, *Environ. Sci. Technol.*, 2009, **43**, 8573-8579.
- 3. H. Ma, J. Pedel, P. Fife and W. P. Johnson, *Environ. Sci. Technol.*, 2010, 44, 4383-4383.
- 4. W. Long and M. Hilpert, *Environ. Sci. Technol.*, 2009, **43**, 4419-4424.
- 5. K. E. Nelson and T. R. Ginn, Water Resources Research, 2011, 47.
- 6. H. Ma, M. Hradisky and W. P. Johnson, *Environ. Sci. Technol.*, 2013, 47, 2272-2278.
- 7. M. Elimelech, J. Gregory, X. Jia and R. A. Williams, *Particle deposition and aggregation: measurement, modelling and simulation*, Butterworth Heinemann, Woburn, USA, 1995.
- 8. D. L. Sparks, A. L. Page, P. A. Helmke and R. H. Loeppert, *Methods of Soil Analysis Part 3—Chemical Methods*, Soil Science Society of America, American Society of Agronomy, Madison, WI, 1996.
- 9. L. van Reeuwijk, *Procedures for Soil Analysis sixth edition*, ISRIC, Wageningen, the Netherlands, 2002.
- 10. L. C. Blakemore, P. L. Searle and B. K. Daly, *Methods for chemical analysis of soils*, New Zealand Soil Bureau, Lower Hutt, New Zealand, 1987.
- 11. O. Omotoso, D. K. McCarty, S. Hillier and R. Kleeberg, *Clays and Clay Minerals*, 2006, **54**, 748-760.