Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Foliar application of nanoparticles: Mechanism of absorption, transfer, and multiple impacts

Jie Hong^a, Chao Wang^a, Dane C. Wagner^b, Jorge L. Gardea-Torresdey^c,

Feng Hea*, Cyren M. Ricob*

^aCollege of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China

^bChemistry Department, Missouri State University, Springfield, MO 65897

^cDepartment of Chemistry and Biochemistry, The University of Texas, El Paso, TX 79968, United States

Corresponding Author: Feng He, fenghe@zjut.edu.cn

Cyren M Rico, CyrenRico@MissouriState.edu

Journal: Environmental Science: Nano

Total number of pages: 8

Nanoparticles	Concentration	Plant	Effects	Particle size	Ref
Citrate-Au NPs	280 ng per plant	Wheat (<i>Triticum aestivum</i> cv. cumberland), foliar exposure	 Mainly accumulating on the outside of the plant leaves; Overall neutral or beneficial impacts. 	Size (3, 10, or 50 nm)	23
PVP-Au NPs (Polyvinylpyrrolido ne)	280 ng per plant		 Crossing the cuticle layer and interacting with (in or on) the mesophyll cells; Impairing leaf photosynthesis. 	Size (3, 10, or 50 nm)	
Ceria NPs Ce ³⁺ ions	0, 40, 80, 160 mg Ce L ⁻¹ 0, 40, 80, 160 mg Ce L ⁻¹	Common bean (<i>Phaseolus vulgaris</i>), foliar application	 Dose-dependent oxidative damages in the leaves; Ce³⁺ ions were significantly more toxic than equimolar ceria NPs. 	6.9 ± 0.4 nm by TEM; Hydrodynamic diameter: 40.2 ± 7.2 nm	12
As NPs	0, 10, 50 mg per plant	Spinach (<i>Spinacia oleracea</i>), foliar application	 Plant dry biomass (up to 84%) and pigment contents (up to 38%) were reduced significantly; Antioxidative enzymes activities were increased (SOD, CAT, POD). 	Lying in the range of 40–60 nm	24

Table S1. Effects of foliar applications of engineered nanoparticles on plants. References follow those in the main text.

PbO NPs	0, 10, 50 mg per plant	Spinach, foliar application	 Significantly decreased in pigment contents and dry weight; Activation of antioxidative enzymes were induced; ROS production and lipid peroxidation did not alter. 	Particle size < 100 nm.	13
Au NPs (Green-Synthesized)	Au in the Au NP priming solution was 5.4 µgmL ⁻¹	Onion seeds. (<i>Allium cepa</i> L.)	 Significant change in emergence percentage; Increased chlorophyll content in the leaves and reduced pungency level in the bulbs. 	93.68 ± 2.06 nm	53
Ag ⁰ NPs Ag ₂ S NPs	10 mg mL ⁻¹ 100 mg mL ⁻¹	Rice (<i>Oryza sativa</i> L.), root surface of wetland plants	 Iron plaque had contrasting effects: Ag uptake was enhanced upon Ag₂S NP exposure but inhibited upon Ag⁰ NP exposure; Ag NP phytoavailability to wetland plants depends on Ag NP species (Ag⁰ NPs vs. Ag₂S NPs) and the amount of iron plaque; Ag⁰ NPs were more bioavailable than Ag₂S NPs. 	Average diameter of 12.2 ± 3.1 nm measured by TEM; 20.3 ± 1.4 nm measured by spICP- MS 83.7 ± 24.7 nm measured by TEM; average size was 73.0 ± 1.5 nm measured by spICP-MS	33

Ag NPs (used for comparison with the uptake and accumulation of Ag via root exposure) Ag NPs (used to study the effects of foliar application)	0.1, 0.5, and 1 mg L ⁻¹ 1 1, 10, and 50 mg L ⁻¹	Lettuce (<i>Lactuca sativa</i>)	 The Ag NPs (particle) contributed more to toxicity than Ag NPs (ion); Adverse impacts on the growth; Root exposure to Ag NPs had a stronger negative effect than foliar exposure when biomass was selected as the endpoint of assessment. Enrichment factors of Ag NPs (total): root exposure > foliar exposure > exposure via single leaf immersion. 	Nominal size of 20 nm;	5
Au NP coated with citrateAu NP coated with bovine serum albumin (BSA)Au NP coated with LM6-M	100 mg L ⁻¹	Broad bean (<i>Viciafaba</i> cv. Windsor), leaves via drop deposition	Randomly covered the plant leaves. Specific affinity for trichomes. Strongly adhered to the stomata and remained on the leaf surface.	TEM diameter: 12.6 \pm 1.0 nm TEM diameter: 14.0 \pm 1.0 nm TEM Diameter: 11.6 \pm 1.2 nm	40
Ag@CoFe ₂ O ₄ NPs	0, 5, 10, 25, 50, 100, and 200 mg kg ⁻¹	Wheat seeds (<i>Triticum aestivum</i> var. Roelfs).	 Seed germination was not affected; Seedling growth diminished; Oxidative damage by reactive 	SEM: lesser agglomeration particles of ~10 nm	27

			oxygen species generation.		
ZnO NPs	1000, 2000 mg L ⁻¹	Habanero pepper plants (<i>Capsicum chinense</i> Jacq.), foliar applications	1) 1000 mg L ⁻¹ positively affected plant height, stem diameter, chlorophyll content, and increased fruit yield and biomass accumulation;	Most of the particles (75%) had diameters of 12 to 24 nm	14
			2) 2000 mg L ⁻¹ negatively affected plant growth but significantly increased fruit quality, content of total phenols and total flavonoids in fruits, which resulted in higher antioxidant capacity.		
CeO ₂ NPs	50 mg L ⁻¹	Monocotyledons (Corn (<i>Zea</i> <i>mays</i> cv. Trinity), Rice (<i>Oryza sativa</i> cv. Nipponbare)); Dicotyledons (Tomato (<i>Solanum lycopersicum</i> cv. Roma), Lettuce (<i>Lactuca</i> <i>sativa</i> cv. Buttercrunch))	 Positively charged CeO₂ NPs associated to the roots more than the negatively charged NPs; Positive NPs remained primarily adhered to the roots untransformed, the neutral and negative NPs were more efficiently translocated from the roots to shoots; Positive and neutral Ce clusters outside of the main vasculature in the mesophyll; negative primarily in the main vasculature of the leaves. 	~4 nm	30
SiO ₂ NPs	300 ppm	Sugarcane (<i>Saccharum</i>	1) Reduced the adverse effects of chilling by maintaining the maximum	5–15 nm	16
ZnO NPs	50 ppm		photochemical efficiency;	<100 nm	

Se NPs Graphene nanoribbons (GNRs)	15 ppm 50 ppm	foliar application	 2) Light harvesting pigments (chlorophylls and carotenoids) content were increased; 3) SiO₂ NPs showed higher amelioration effects. 	100 mesh 2–15 μm × 40–250 nm	_
TiO ₂ NPs	0, 100, 250 mg L ⁻¹	Maize (<i>Zea mays</i> L.), foliar exposure	 Foliar exposure to TiO₂ NPs significantly reduced the uptake and translocation of Cd and TiO₂ NPs; Root exposure to TiO₂ NPs exerted greater phytotoxicity to maize, and lead to the NPs accumulation in the aerial part of plants; 	6.5 ± 0.76 nm	25
CeO ₂ NPs	0, 50, and 250 mg L ⁻	Tomato (Solanum lycopersicum)	 250 mg L⁻¹ increased the fruit dry weight and lycopene content in infested plants; Minimal negative effects of CeO₂ NPs on the nutritional value of tomato fruit while simultaneously suppressing Fusarium wilt disease. 	Primary size of 8 ± 1 nm	30
Si NPs Se NPs	5, 10, and 20 mg L ⁻¹	Rice (<i>Oryza sativa</i> L.), foliage application	 Combined application of Se and Si was more effective in reducing the Cd and Pb contents; Foliar application of both NPs 	$18.04 \pm 3 \text{ nm}$ $12.26 \pm 2 \text{ nm}$	16

			improved the rice growth and quality;3) Foliage supplementation of Se and Si NPs alleviate the Cd and Pb toxicity.		
TiO ₂ NPs	Control, sole Cd treatment, Cd+100 mg nTiO ₂ L ⁻¹ and Cd+200 mg nTiO ₂ L ⁻¹	Cowpea (<i>Vigna unguiculata</i> (L.) Walp.), foliar-intervention	 Significantly promoted chlorophyll b and total chlorophyll contents after Cd stress; Promoted stress enzymes activity in both roots and leaves; Significant ameliorative potential for Cd toxicity. 	<100 nm	25
La ₂ O ₃ NPs	0, 5, 10 , 50 mg L ⁻¹	C ₃ (Soybean (<i>Glycine max</i> (L.) Merr.)), C ₄ (Maize (<i>Zea mays</i> L.))	 Net photosynthetic rate was reduced significantly by 8.77% and 55.52% in soybean and maize; Inhibited the photosynthesis of soybean by hindering the light utilization and electron transport, maize was mainly restricted carbon fixation. 	Sizes of the rod- shaped La ₂ O ₃ NPs range from 30 nm to 150 nm by TEM	28
CdS NPs	0, 10, and 100 mg CdS NPs per kg soil	Broad bean (<i>Vicia faba</i> L.)	 Several antioxidative metabolites were significant up-regulation; Plants reprogram of carbon and nitrogen metabolism alleviated the toxicity of CdS NPs. 	Hydrodynamic diameter: 140–615 nm with an average of 294 nm; 10 to 100 nm as determined by	128

				TEM	
Zn NPs (green synthesis) Cu NPs (green synthesis)	0, 1000, 2000, and 4000 ppm	Basil (<i>Ocimum basilicum</i> L.), foliar application	 Significantly affected concentrations of total chlorophyll and carotenoid in the leaves; Obtaining better quantity and quality in basil; Significantly affected morphological and biochemical attributes. 	less than 100 nm (SEM)	54