Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2021

Predicting Adsorption of Organic Pollutants on Boron Nitride Nanosheets via *in silico* Techniques: DFT Computations and QSAR Modeling

Ya Wang,† Weihao Tang,‡ Yue Peng,†,* Zhongfang Chen,§,* Jingwen Chen,‡,* Zijun Xiao,‡ Xiaoguang Zhao,‡ Yakun Qul,

Junhua Li†

[†] School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China

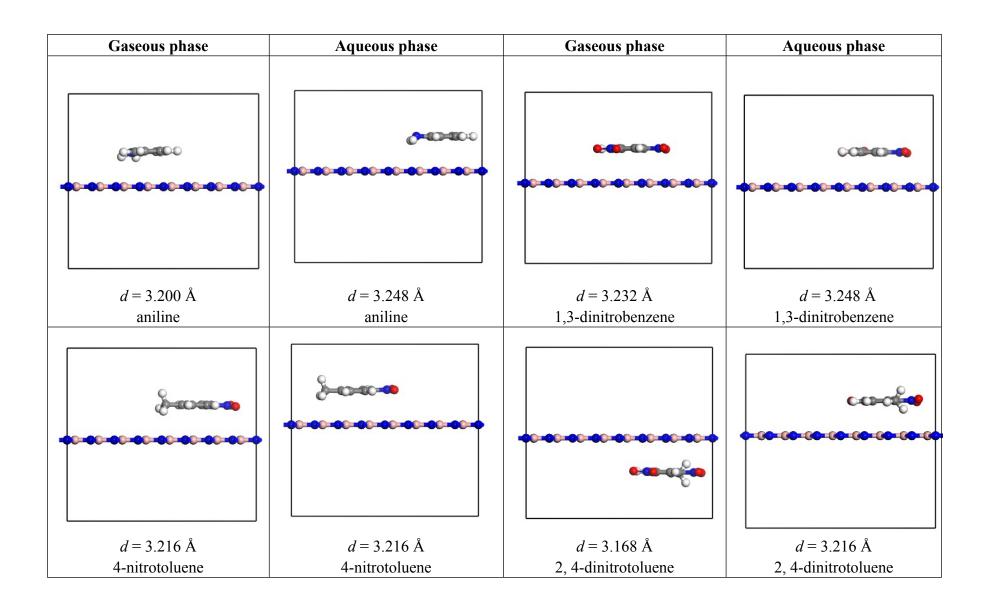
‡ Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China

§ Department of Chemistry, University of Puerto Rico, San Juan, PR 00931, USA

SINOPEC Research Institute of Petroleum Processing (RIPP), Beijing 100083, China

Corresponding Authors

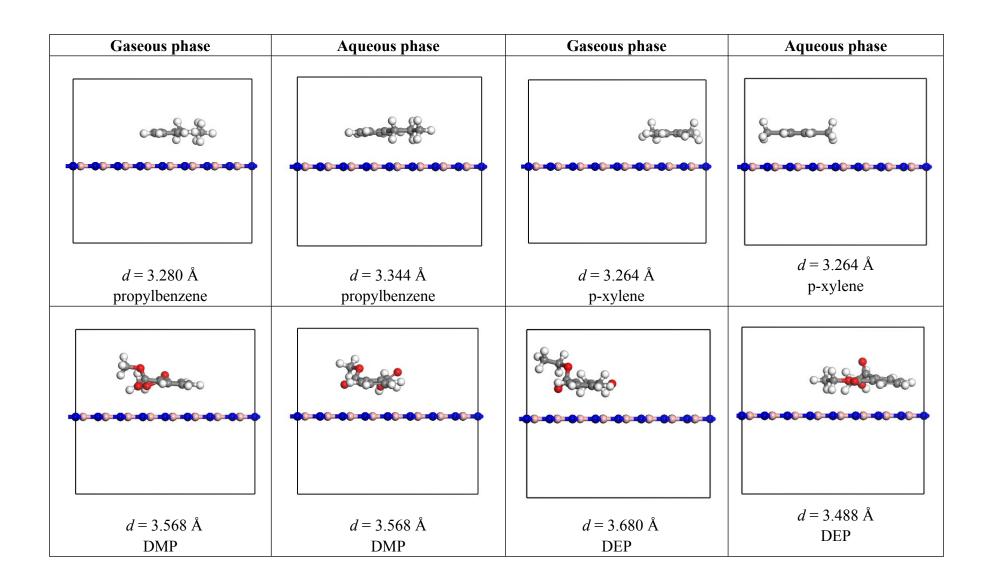
- * Yue Peng, e-mail: pengyue83@tsinghua.edu.cn
- * Zhongfang Chen, e-mail: <u>zhongfangchen@gmail.com</u>.
- * Jingwen Chen, e-mail: jwchen@dlut.edu.cn.

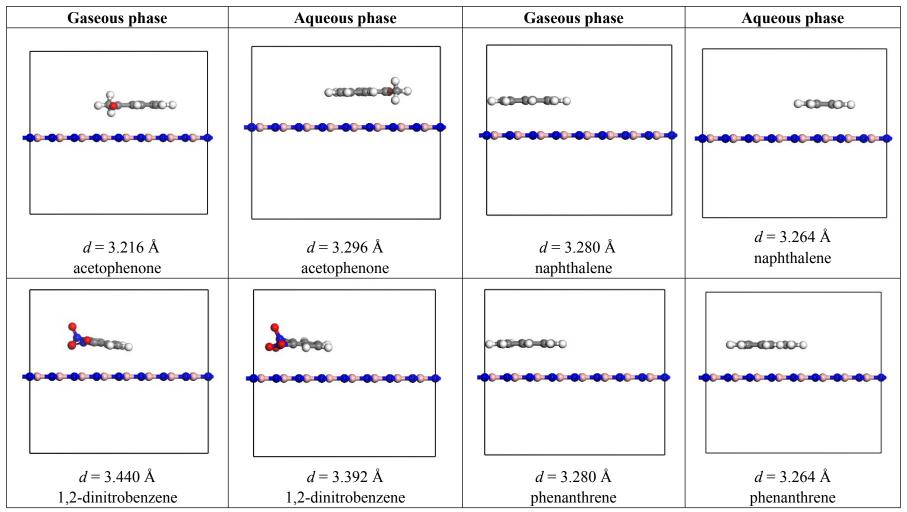

The SI consists of three tables and three figures. There are 14 pages in total.

Contents

Table S1. Adsorption equilibrium configuration for the 28 organic compounds on boron nitride nanosheet	4
Table S2. Charge transfer between the compound and the boron nitride nanosheet from the adsorption complex.	1
Table S3. Estimated logarithm values for adsorption equilibrium coefficient (logK) for fluorene from DFT computations and prediction models in the gaseous	an
aqueous environments	12
Figure S1. Williams plots of standardized residuals (δ^*) versus leverage values (h) for pp-LFER models (h^* denotes the warning leverage value)	13
Figure S2. Williams plots of standardized residuals (δ^*) versus leverage values (h) for QSAR models (h^* denotes the warning leverage value)	13
Figure S3. Non-covalent interactions (NCI) analysis for the interactions between C_6H_6 and $B_{15}N_{15}H_{14}$ with the Multiwfn program	14

 Table S1. Adsorption equilibrium configuration for the 28 organic compounds on boron nitride nanosheet


Gaseous phase	Aqueous phase	Aqueous phase	
(Capeno	C-CD=00-0	0-00-00-00-00-00-00-00-00-00-00-00-00-0	CC3-650-0
d = 3.376 Å benzene	d = 3.408 Å benzene	d = 3.200 Å nitrobenzene	d = 3.200 Å nitrobenzene
		CC-40-0	(C20-40-10
	d	0-00-00-00-00-00-0	
d = 3.504 Å toluene	= 3.296 Å toluene	d = 3.200 Å phenol	d = 3.392 Å phenol



Gaseous phase	Aqueous phase	Gaseous phase	Aqueous phase
00-00-00-00-00-00-00-00-00-00-00-00-00-	(390390390390) -00-00-00-00-00-00-00-00-	00-00-00-00-00-00-00-00-00-00-00-00-00-	C-C2-C2-C0-C
d = 3.264 Å anthracene	d = 3.200 Å anthracene	d = 3.280 Å pyrene	d = 3.248 Å pyrene
	0-00-00-00-00-00-00-0	A 400 00 00 00 00 00 00 00 00 00 00 00 00	
d = 3.264 Å	d = 3.264 Å	d = 3.216 Å	d = 3.232Å
biphenyl	biphenyl	3,5-dimethylphenol	3,5-dimethylphenol

Gaseous phase	Aqueous phase	Gaseous phase	Aqueous phase	
		& *** *** *** ***	€ € CO	
d = 3.264 Å ethylbenzoate	d = 3.280 Å ethylbenzoate	d = 3.232 Å 4-ethylphenol	d = 3.280 Å 4-ethylphenol	
00000000000000000000000000000000000000	COCCO 00-00-00-00-00-00-00-00-00-00-00-00-00-	00-00-00-00-00-00-00-00-00-00-00-00-00-		
d = 3.232 Å	d = 3.248 Å	d = 3.280 Å	d = 3.216 Å	
methylbenzoate	methylbenzoate	(3-methylphenyl)methanol	(3-methylphenyl)methanol	

Gaseous phase	Aqueous phase	Gaseous phase	Aqueous phase
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(2000CCC)		
d = 3.264 Å 1-methylnaphthalene	d = 3.280 Å 1-methylnaphthalene	d = 3.616 Å phenylacetate	d = 3.600 Å phenylacetate
00-00-00-00-00-00-00-00-00-00-00-00-00-	0 00 00 00 00 00 00 00 00 00 00 00 00 0		
d = 3.248 Å	d = 3.264 Å	d = 3.648 Å	d = 3.440 Å
2-phenylethanol	2-phenylethanol	phenylmethanol	phenylmethanol

d denotes the distance between the center of molecule and that of the boron nitride surface.

Table S2. Charge transfer between the compound and the boron nitride nanosheet from the adsorption complex

No.	Compound	Charge transfer (e)*		_ No.	Compound	Charge transfer (e)*	
NO.	Compound	Gaseous phase	Aqueous phase	- 1 NO.	Compound	Gaseous phase	Aqueous phase
1	benzene	0.009	0.011	15	methylbenzoate	-0.024	-0.024
2	nitrobenzene	-0.003	-0.006	16	(3-methylphenyl)methanol	-0.054	-0.029
3	toluene	-0.010	-0.017	17	1-methylnaphthalene	-0.017	-0.018
4	phenol	0.004	0.013	18	phenylacetate	0.008	0.016
5	aniline	-0.018	-0.015	19	2-phenylethanol	-0.049	-0.029
6	1,3-dinitrobenzene	-0.016	-0.014	20	phenylmethanol	-0.016	-0.032
7	4-nitrotoluene	-0.021	-0.019	21	propylbenzene	-0.064	-0.063
8	2, 4-dinitrotoluene	-0.027	-0.051	22	p-xylene	-0.045	-0.046
9	anthracene	0.011	0.023	23	dimethyl phthalate (DMP)	-0.022	-0.018
10	pyrene	0.016	0.016	24	diethyl phthalate (DEP)	-0.030	-0.096
11	biphenyl	0.009	0.006	25	acetophenone	-0.035	-0.029
12	3,5-dimethylphenol	-0.035	-0.039	26	naphthalene	0.006	0.005
13	ethylbenzoate	-0.053	-0.048	27	1,2-dinitrobenzene	-0.010	0.003
14	4-ethylphenol	-0.022	-0.033	28	phenanthrene	0.010	0.009

^{*}Charge transfer: the positive value represents that the electron transfers from the compound to the boron nitride nanosheet, while the negative value means that the electron transfers from the boron nitride nanosheet to the compound.

Table S3. Estimated logarithm values for adsorption equilibrium coefficient (log*K*) for fluorene from DFT computations and prediction models in the gaseous and aqueous environments

Madal	1	Gaseous	Aqueous		
Model	$\log K (\mathrm{DFT})$	logK (predicted)	$\log K (\mathrm{DFT})$	log K (predicted)	
Eq 9 (pp-LFERs)	14.90	12.25	-	-	
Eq 10 (pp-LFERs)	-	-	9.97	10.13	
Eq 11 (QSAR)	14.90	11.10	-	-	
Eq 12 (QSAR)	-	-	9.97	11.21	

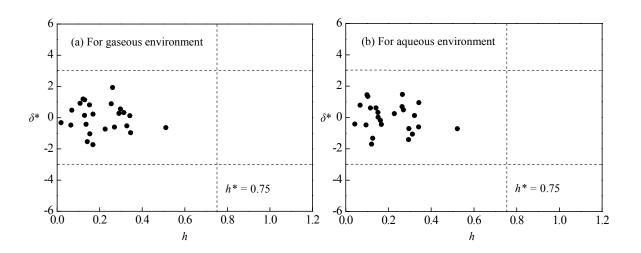


Figure S1. Williams plots of standardized residuals (δ^*) versus leverage values (h) for pp-LFER models (h^* denotes the warning leverage value)

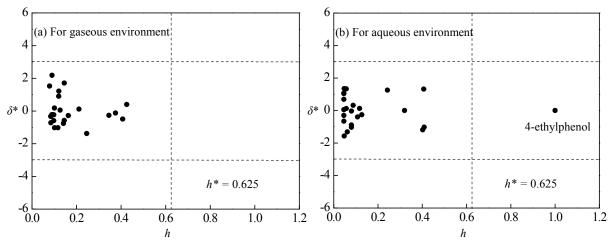


Figure S2. Williams plots of standardized residuals (δ^*) versus leverage values (h) for QSAR models (h^* denotes the warning leverage value)

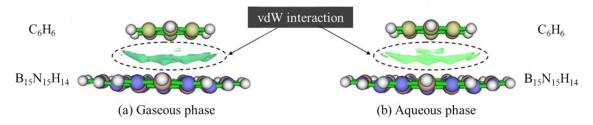


Figure S3. Non-covalent interactions (NCI) analysis for the interactions between C_6H_6 and $B_{15}N_{15}H_{14}$ with the Multiwfn¹ program

REFERENCES

(1) Lu, T. and Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33 (5), 580-592.