Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Facile preparation of hydrophilic In₂O₃ nanospheres and rods with improved performances for photocatalytic degradation of PFOA

Xiaoqing Liu¹, Bentuo Xu^{1, 2}, Xiaoguang Duan³, Qiang Hao¹, Wei Wei¹, Shaobin Wang³,

Bing-Jie Ni^{1,*}

¹Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia ²School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China ³School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia

*Corresponding author:

Tel.: +61 295147401; E-mail: bingjieni@gmail.com

Table S1. The target compounds of PFOA and its degradation products, and their MS/MSparameters.

Acronym	Name	Formula	MS/MS mass	Cone voltage	Collision energy
			transition	(V)	(eV)
PFOA	Perfluorooctanoic acid	C ₇ F ₁₅ COOH	$\begin{array}{c} 412.90 \rightarrow \\ 369.00 \end{array}$	20	10
PFHpA	Perfluoroheptanoic acid	C ₆ F ₁₃ COOH	$\begin{array}{c} 363.00 \rightarrow \\ 319.00 \end{array}$	2.6	22
PFHxA	Perfluorohexanoic acid	C ₅ F ₁₁ COOH	$\begin{array}{c} 313.00 \rightarrow \\ 269.00 \end{array}$	2.6	8.4
PFPeA	Perfluoropentanoic acid	C ₄ F ₉ COOH	$\begin{array}{c} 262.55 \rightarrow \\ 219.10 \end{array}$	2.6	8.4
PFBA	Perfluorobutyric acid	C ₃ F ₇ COOH	$\begin{array}{c} 212.20 \rightarrow \\ 169.10 \end{array}$	2.6	10.0
PFPrA	Pentafluoropropionic acid	C ₂ F ₅ COOH	$\begin{array}{c} 162.9 \rightarrow \\ 118.8 \end{array}$	12.0	7.0
TFA	Trifluoroacetic acid	CF ₃ COOH	$\begin{array}{c} 112.9 \rightarrow \\ 68.9 \end{array}$	12.0	7.0

Name	In-BDC NS	In-BDC rod	In ₂ O ₃ NS	In ₂ O ₃ rod	Commercial In ₂ O ₃
C1s (%)	52.73	51.81	12.99	10.42	16.17
In3d (%)	6.98	7.18	32.56	33.97	31.44
O1s (%)	40.29	41.01	54.45	55.61	52.39

Table S2 Atomic ratio (%) of elements (In, O and C), based on XPS survey-scan spectra.

Figure S1. ESR spectra of In₂O₃ samples.

Figure S2. SEM images of commercial In_2O_3 (a, b), In_2O_3 NS (c, d), In_2O_3 rod (e, f), In-BDC NS (g), and In-BDC rod (h).

Figure S3. Adsorption of PFOA onto In₂O₃ samples.

Figure S4. Second-order kinetics simulation of PFOA degradation: $\frac{1}{C_t} - \frac{1}{C_0} = kt$, where, C_t (mg L⁻¹) is the concentration at t min, C_0 (mg L⁻¹) is the original concentration, k (L mg⁻¹ min⁻¹) is the reaction constant, t (min) is the reaction time.

Figure S5. Fluoride ion detected during the photodegradation of PFOA.

Figure S6. The TOC removal rate under UV light irradiation in the presence of commercial In_2O_3 , In_2O_3 NS and rod.

Figure S7. Effects of different scavengers on the PFOA photodegradation in the UV/In_2O_3 NS System.

Figure S8. The transient photocurrent density responses of prepared-sample electrodes with light on/off cycles under UV 254 nm light irradiation.