Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2021

## Activation of inorganic peroxides with magnetic graphene for the removal of

## antibiotics in wastewater

Rafael R. Solís<sup>1, \*</sup>, Ozge Dinc<sup>1,2</sup>, Guodong Fang<sup>3</sup>, Mallikarjuna N. Nadagouda<sup>4</sup>,

Dionysios D. Dionysiou<sup>1</sup>

<sup>1</sup> Environmental Engineering and Science Program, Department Chemical and Environmental Engineering, University of Cincinnati, 45221, Cincinnati, Ohio, USA

<sup>2</sup> Department of Biotechnology, Hamidiye Health Science Institute, University of Health Sciences-Turkey, 34668, Uskudar, Istanbul, Turkey

<sup>3</sup> Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, PR China

<sup>4</sup> U. S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 45268, Cincinnati, Ohio, USA

## SUPPLEMENTARY INFORMATION



**Figure S1.** SEM images of magnetic graphene with different magnetite:graphene ratios. MG0.2 (A1 and A2), MG0.4 (B1 and B2), MG0.6 (C1 and C2) and MG0.8 (D1 and D2)



Figure S2. FTIR spectra of magnetic Graphene with different magnetite:graphene ratios



**Figure S3.** Raman spectra of bare graphene, magnetic graphene with different magnetite ratios, and bare magnetite (from RRUFF<sup>TM</sup> database)



**Figure S4.** XPS high resolution spectra of O1s, C1s and  $Fe2p_{2/3}$  and their deconvolution of the magnetic graphene catalysts



**Figure S5.** Leaching of iron into solution after 120 min in magnetic graphene catalysts at different pH values. *Experimental conditions:* V=100 mL;  $C_{CAT}=0.5 \text{ g } L^{-1}$ ;  $C_{H3PO4}=5 \text{ mM}$ .



**Figure S6.** Leaching of iron into solution over time in MGX catalysts at different pH values. *Experimental conditions:* V=100 mL;  $C_{CAT}=0.5 \text{ g } L^{-1}$ ;  $C_{H3PO4}=5 \text{ mM}$ .



**Figure S7.** Evolution of PMS conversion in the presence of scavengers in ultrapure (empty symbols) SUWW matrix (filled symbols) during PMS-catalytic activation. *Experimental conditions:* V=250 mL;  $C_{SMX,0}=5 \text{ mg } L^{-1}$ ;  $C_{MG0,2}=250 \text{ mg } L^{-1}$ ;  $C_{scavenger}=10 \text{ mM}$ ;  $C_{PMS,0}=0.5 \text{ mM}$ ;  $pH_i=9.2\pm0.1$ .