Supporting Information

Photothermal Synergy Effect of Pure $Ti_3C_2T_x$ in Antibacterial Reaction and Its Mechanism

Rumeng Zhang,^{a,b} Chao Li,^a Wei Liu,^a Yingping Huang,^c Bo Wang,^d Kemeng Xiao,^e

Po Keung Wong,^e Liqun Ye,^{a*}

a College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China.

b Engineering Technology Research Center of Henan Province for Solar Catalysis;

College of Life Science and Technology, Nanyang Normal University, Nanyang 473061,

P. R. China.

c China Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, P. R. China.

d Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.

e School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China.

*Correspondence author:

E-mail: lqye@ctgu.edu.cn

pages: 9; Figures: 6;

Contents

Figure S1. Pore size distribution curves.

Figure S2. Complete spectrum of the light.

Figure S3. SEM of (a-b) Ti_3AIC_2 and (c-d) $Ti_3C_2T_x$.

Figure S4. HRTEM of (a-b) Ti₃AlC₂ and (c-d) Ti₃C₂T_x.

Figure S5. Photos of the bacterial solution in the medium after sterilization with different concentrations of TC (dilution ratio is 10⁻²).

Figure S6. Cyclic sterilization experiment.

Figure S7. XRD patterns of $Ti_3C_2T_x$ before and after cyclic sterilization experiment.

Figure S8. The inactivation curves of normal and starved E. coli cells. The error bars represent the standard error from triplicate inactivation experiments.

Figure S2. SEM of (a-b) Ti_3AIC_2 and (c-d) $Ti_3C_2T_x$.

Figure S3. HRTEM of (a-b) Ti_3AIC_2 and (c-d) $Ti_3C_2T_x$.

Figure S4. Complete spectrum of the light.

Figure S5. Photos of the bacterial solution in the medium after sterilization with different concentrations of $Ti_3C_2T_x$ (dilution ratio is 10^{-2}).

Figure S6. Cyclic sterilization experiment.

Figure S7. XRD patterns of $Ti_3C_2T_x$ before and after cyclic sterilization experiment.

Figure S8. The inactivation curves of normal and starved E. coli cells. The error bars represent the standard error from triplicate inactivation experiments.

$Log(N/N_0) = -k(CT)$

where N_0 is the initial *E. coli* population (cfu/mL), N the remaining *E. coli* population at time t (cfu/mL), C the catalyst concentration (mg/mL), k the inactivation rate constant (mL/(mg min)), and T the inactivation time (min).

In order to compare it to traditional sterilization methods, the improved *Chick-Watson* inactivation model was used to simulate the inactivation profile of $Ti_3C_2T_x$ (Figure S8). It can be found that the log removal credits of sterilization (the catalyst CT for achieving 2 log E. coli inactivation) was found to be 5.4 mg min/mL.