Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2020

## Supporting Information

for

Pilot-Scale Ozone/Biological Activated Carbon Treatment of Reverse Osmosis Concentrate: Potential for Synergism Between Nitrate and Contaminant Removal and Potable Reuse

Zhong Zhang<sup>1</sup>, Jacob F. King<sup>1</sup>, Aleksandra Szczuka<sup>1</sup>, Yi-Hsueh Chuang<sup>1,2</sup>, and William A. Mitch<sup>1,\*</sup>

<sup>1</sup>Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States

<sup>2</sup> Institute of Environmental Engineering, National Chiao Tung University, Hsinchu City, Taiwan

## **Table of Contents**

| Figure S1: Schematic diagram of the pilot-scale O <sub>3</sub> /BAC system.                    | S3         |
|------------------------------------------------------------------------------------------------|------------|
| Figure S2: DOC removal during the BAC acclimatization.                                         | S3         |
| Text S1: Analytical methods for pesticides and pharmaceuticals.                                | S4         |
| Table S1: Gradient method parameters.                                                          | S5         |
| Table S2: Optimized LC-MS/MS parameters for the analytes by MRM.                               | <b>S</b> 6 |
| <b>Table S3:</b> Concentrations for contaminants for different O <sub>3</sub> /BAC conditions. | <b>S</b> 7 |
| Figure S3: Concentrations of fipronil sulfone, fipronil sulfide and fipronil desulfonyl        | <b>S</b> 8 |
| Figure S4. Concentrations of DOC (mg-C/L), nitrite (mg-N/L) and nitrate (mg-N/L)               |            |
| at different BAC EBCTs with 40, 60 and 70 mg-C/L methanol addition.                            | S9         |
|                                                                                                |            |



Fig. S1. Schematic diagram of the pilot-scale O<sub>3</sub>/BAC system.



**Fig. S2.** DOC removal during BAC treatment (45 min EBCT) of  $O_3$ -treated (20 mg/L (~0.5 mg  $O_3$ /mg DOC)) RO concentrate during BAC column acclimatization.

Text S1. Analytical methods for pesticides and pharmaceuticals

**Chemicals and reagents.** HPLC-grade organic solvents (methanol, acetonitrile) and water were purchased from Thermo Fisher Scientific. Analytical standards of imidacloprid, fipronil, fipronil desulfinyl, DEET, atenolol, sulfamethoxazole and deuterated imidacloprid-d<sub>4</sub>, atenolol-d<sub>7</sub>, DEET-d<sub>10</sub> were obtained from Sigma-Aldrich. Analytical standards of fipronil sulfide and sulfone, were obtained from Bayer and BASF. Deuterated sulfamethoxazole-d<sub>4</sub>, and mass-labeled [ $^{13}C_2^{15}N_2$ ] fipronil and [ $^{13}C_4^{15}N_2$ ] fipronil sulfone were bought from Toronto Research Chemicals and Cambridge Isotope Laboratories, respectively.

**Sample extraction.** Water samples were collected in 2 L glass bottles that had been baked at 400 °C for 3 h in a muffle oven, and were sealed with Teflon-lined caps. The samples were stored in the 4 °C cold room before extraction and sample extractions were completed within one week. Imidacloprid, fipronil, fipronil sulfone, fipronil sulfide and fipronil desulfinyl were extracted with Strata-X 33 $\mu$ m polymeric reversed-phased SPE cartridges (500 mg, 3 mL) obtained from Phenomenex (Torrance, CA, USA). Twenty ng of imidacloprid-d<sub>4</sub> and mass-labeled [ $^{13}C_2^{15}N_2$ ] fipronil and [ $^{13}C_4^{15}N_2$ ] fipronil sulfone were spiked into 500-mL water samples. The SPE cartridges were pre-conditioned with 6 mL acetonitrile followed by 6 mL HPLC water. Then spiked water samples were loaded on the cartridges at 2-3 mL/min. After loading, cartridges were washed with 6 mL methanol/water mixture (60:40, v/v) and then dried under a gentle nitrogen stream. The target compounds were eluted with 10 mL acetonitrile and the elution was concentrated by nitrogen blow-down to 0.5 mL for LC-MS/MS analysis.

DEET, atenolol and sulfamethoxazole (SMX) were extracted with Supel<sup>TM</sup>-Select HLB SPE cartridges (200 mg, 6 mL) purchased from Supelco (Bellefonte, PA, USA). Fifty ng of DEET- $d_{10}$ , atenolol- $d_7$  and sulfamethoxazole- $d_4$  were spiked into 500-mL water samples. The SPE cartridges were pre-conditioned with 6 mL methanol followed by 6 mL HPLC water. The water samples were passed through the cartridges at 2-3 mL/min. Cartridges were then washed with 6 mL water and dried under a gentle nitrogen stream. The target compounds were eluted with 10 mL methanol and the elution was concentrated to 0.5 mL by nitrogen blow-down for LC-MS/MS analysis.

LC-MS/MS analysis. Target compounds were quantified on a LC-MS/MS triple quadrupole system (Agilent) equipped with a 150 mm  $\times$  3 mm Synergi 4  $\mu$ m Hydro-RP 80 Å column (Phenomenex, Torrance, CA, USA). Compounds were separated using a 43 min gradient method at a 0.6 mL/min flowrate. The mobile phases A and B were water with 5 mM ammonium formate and methanol, respectively. The gradient is shown in the Table S2. The injection volume was 10  $\mu$ L. Electrospray ionization was used to detect the compounds with the following operational parameters: capillary voltage 3500 V in both positive and negative; nebulizer pressure 45 psig; drying gas 7 L/min; gas temperature 300 °C; sheath gas flow 9 L/min; sheath gas temperature 250 °C; nozzle voltage 500 V in both positive ion mode. Compound specific parameters are listed in Table S3. The method reporting limits were 10 ng/L for the pesticides and pharmaceuticals and 1 ng/L for the fipronil transformation products.

|            |       | -     |
|------------|-------|-------|
| Time (min) | A (%) | B (%) |
| 0          | 95    | 5     |
| 2          | 95    | 5     |
| 10         | 58    | 42    |
| 12         | 58    | 42    |
| 13         | 23    | 77    |
| 19         | 23    | 77    |
| 27         | 10    | 90    |
| 32         | 10    | 90    |
| 33         | 0     | 100   |
| 38         | 0     | 100   |
| 41         | 95    | 5     |
| 43         | 95    | 5     |

**Table S1.** Gradient method parameters. A = water with 5 mM ammonium formate, B = methanol.

| Compound                                                                       | MRM<br>transition | Dwell (ms) | Fragmentor (V) | Collison<br>Energy (V) | Cell Accelerator<br>Voltage (V) | Polarity |
|--------------------------------------------------------------------------------|-------------------|------------|----------------|------------------------|---------------------------------|----------|
| Fipronil                                                                       | 435.0/330.0       | 50         | 112            | 8                      | 7                               | Negative |
| Fipronil sulfone                                                               | 450.9/414.9       | 25         | 140            | 5                      | 7                               | Negative |
| Fipronil sulfide                                                               | 418.9/382.9       | 25         | 110            | 5                      | 7                               | Negative |
| Fipronil desulfinyl                                                            | 387.0/351.0       | 25         | 80             | 5                      | 7                               | Negative |
| [ <sup>13</sup> C <sub>2</sub> <sup>15</sup> N <sub>2</sub> ] Fipronil         | 439.0/334.0       | 50         | 112            | 8                      | 7                               | Negative |
| [ <sup>13</sup> C <sub>4</sub> <sup>15</sup> N <sub>2</sub> ] fipronil sulfone | 456.9/420.9       | 25         | 140            | 5                      | 7                               | Negative |
| Imidacloprid                                                                   | 256.1/209.1       | 50         | 110            | 9                      | 7                               | Positive |
| Imidacloprid-d4                                                                | 260.1/213.1       | 50         | 110            | 9                      | 7                               | Positive |
| Sulfamethoxazole                                                               | 254.0/92.0        | 7          | 110            | 25                     | 7                               | Positive |
| Atenolol                                                                       | 267.0/145.0       | 7          | 130            | 24                     | 7                               | Positive |
| DEET                                                                           | 192.0/119.0       | 100        | 110            | 15                     | 7                               | Positive |
| Sulfamethoxazole-d4                                                            | 258.0/96.0        | 7          | 110            | 25                     | 7                               | Positive |
| Atenolol-d7                                                                    | 274.0/145.0       | 7          | 130            | 24                     | 7                               | Positive |
| DEET-d <sub>10</sub>                                                           | 202.0/119.0       | 100        | 110            | 15                     | 7                               | Positive |

**Table S2.** Optimized LC-MS/MS parameters for the analytes by MRM.

| Exp.               | EBCT (min)     |                    |          |              | Removal  |          |        |
|--------------------|----------------|--------------------|----------|--------------|----------|----------|--------|
| Condition          | Conc. $(ng/L)$ | Pre-O <sub>3</sub> | BAC Inf. | 15           | 30       | 45       | (%)    |
|                    | Imidacloprid   | -                  | 427±51   | 344±37       | 183±21   | 51±3     | 88±0.7 |
| No<br>ozonation    | Fipronil       | -                  | 179±21   | 155±14       | 72±9     | 20±5     | 89±1.5 |
|                    | Atenolol       | -                  | 2446±367 | 1986±417     | 1007±171 | 337±44   | 86±0.3 |
|                    | SMX            | -                  | 2495±374 | 2454±270     | 2396±216 | 2316±266 | 7±3.3  |
|                    | DEET           | -                  | 255±54   | 237±40       | 193±25   | 103±11   | 59±4.2 |
|                    | Imidacloprid   | 531±74             | 393±43   | 92±7         | 11±1     | ND       | 100    |
| 0.5 mg             | Fipronil       | 165±17             | 91±6     | 21±5         | 3±1      | ND       | 100    |
| O <sub>3</sub> /mg | Atenolol       | 1324±197           | 555±28   | $500 \pm 56$ | 331±110  | 63±26    | 95±0.2 |
| DOC                | SMX            | 1417±104           | 272±55   | 468±88       | 268±47   | 256±20   | 82±0.1 |
|                    | DEET           | 100±36             | 78±20    | 54±21        | 42±15    | 25±6     | 74±3.6 |
|                    | Imidacloprid   | 480±37             | 236±41   | 65±15        | ND       | ND       | 100    |
| 1.0 mg             | Fipronil       | 217±30             | 32±5     | 4±1          | ND       | ND       | 100    |
| O <sub>3</sub> /mg | Atenolol       | 1659±365           | 179±21   | 210±27       | 136±20   | 19±1     | 99±0.2 |
| DOC                | SMX            | 1734±75            | 122±44   | 201±9        | 139±3    | 92±21    | 95±1   |
|                    | DEET           | 661±98             | 316±58   | 228±54       | 172±43   | 103±12   | 84±0.5 |
| 0.5 mg             | Imidacloprid   | 573±57             | 430±65   | 75±7         | 7±0.4    | ND       | 100    |
| O <sub>3</sub> /mg | Fipronil       | 192±25             | 94±8     | 15±2.4       | 2±0.3    | ND       | 100    |
| DOC                | Atenolol       | 1277±268           | 834±184  | 484±126      | 125±28   | 47±13    | 96±0.2 |
| with               | SMX            | 1273±230           | 234±21   | 284±26       | 225±61   | 176±14   | 86±1.4 |
| methanol           | DEET           | 111±11             | 86±14    | 41±6         | 26±4     | 15±1     | 86±0.4 |

Table S3. Concentrations (average  $\pm$  range of duplicate sample events) for emerging contaminants at different O<sub>3</sub> doses and BAC EBCTs.

ND = Not Detectable.



**Fig. S3.** Concentrations of fipronil sulfone, fipronil sulfide and fipronil desulfonyl at different BAC EBCTs during  $O_3$ /BAC treatment with different  $O_3$  doses. Error bars represent the range of duplicate samples collected on separate occasions. \* = below the reporting limits (< 1 ng/L).



**Fig. S4.** Concentrations of DOC (mg-C/L), nitrite (mg-N/L) and nitrate (mg-N/L) at different BAC EBCTs after pre-treatment with 0.5 mg  $O_3$ /mg DOC and addition of (a) 40 mg-C/L, (b) 60 mg-C/L and (c) 70 mg-C/L methanol. Error bars represent the range of duplicate samples collected on separate occasions.