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Actinometry determination

Actinometry was performed to characterize the power of UVA LEDs of the photoreactor. Due to the λmax (365 nm) 
and high irradiance of the LEDS employed, typical actinometers such as hydrogen peroxide or ferrioxalate, were not 
valid. Hydrogen peroxide has a very low molar absorptivity at 365 nm so its conversion during the experiment was 
negligible. On the other hand, due to the high molar absorptivity and quantum yield of ferrioxalate, together with the 
high irradiance of the LEDs,the actinometer was totally photoreduced to Fe(II) before leaving the photoreactor. 

To solve this situation, NO2
- was used as actinometer since It undergoes direct photolysis leading to production of 

HO· (Jankowski, Kieber, and Mopper 1999): 

 (S1) 2
   NO hv NO O

(S2)2
   O H O OH OH

Equation (S3) represents the photolysis rate of the actinometer at a given wavelength as a function of the irradiance 
per unit volume (I0), quantum yield (𝚽), molar absorptivity (𝛆) and light path length (L).

(S3)
‒

𝑑𝐶
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= 𝐼𝑜 Φ (1 ‒ 𝑒 ‒ 2.303 𝐿 𝜀 𝐶)

For low optical density, (2.303 L 𝛆 C < 0.2), equation (S3) can be simplified leading to (S4):

(S4)
‒
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= 2.303 𝐼𝑜 Φ 𝐿 𝜀 𝐶

After integration takes the form:

(S5)
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Being, at 365 nm, 𝚽NO2- = 0.02 mol E-1 and 𝛆 NO2- = 18.82 M-1 cm-1 (Jankowski, Kieber, and Mopper 1999). For the 
tubular photoreactor used in this work an effective radiation pathlenght (L) of 3 cm (diameter of the tube) was 
considered. If the evolution of NO2

- concentration with time is known, from the slope of the straight line obtained 
from the least squares analysis of the straight line resulting from plotting the left side of equation (S5) against reaction 
time, I0 can be determined. Fig S1 shows the fitting of two experimental data series (C0 concentrations 1.56x10-4 M 
and 1.23x10-3 M) to equation (S5), from which I0 resulted to be 3.92x10-5 Einstein L-1 s-1.
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Figure S1: Determination of I0 corresponding to the UVA LED tubular photoreactor using nitrite as actinometer.

Non ideal flow model study

At the conditions tested (7.7 L h-1 flow rate) and taking into account the characteristics of the tubular reactor (50 cm 
length, 3 cm diameter), the flow regime resulted to be laminar with a Reynolds number of 97.3. 

Under laminar flow regime, for the experimental system used in this work a perfectly mixed condition cannot be 
assumed. For this reason, positive step tracer experiments (Fogler 2004) were performed using NaCl as tracer (inlet 
concentration of 5 g L−1). Figure S2(A) and S2(B) depicts the evolution with time of tracer normalized concentration 
corresponding to one of the experiments and the residence time distribution function, E(t), respectively.

Values of E(t) function leads to a mean residence time of 2.97 min and a dimensionless variance of 0.31. The inverse 
of this value, 3.23, yields the number (N) of perfectly mixed reactors in series simulating the actual tubular 
photoreactor. For calculation reasons, this value was incremented to a whole number of 4.

(A) (B)

Figure S2: A: Evolution of NaCl (tracer) concentration with time in a positive step tracer experiment in the tubular 
photoreactor. B: Residence time distribution function obtained.



Kinetic model of the oxidation systems studied.

Mass balance of ozone gas in the tank:
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Mass balance of dissolved ozone in the tank and in any assumed photoreactor. Note that in the photoreactors no 
ozone is fed and consequently kLa = 0:
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Mass balances of different dissolved TOC fractions in the tank and in any assumed photoreactor:
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Mass balances of different adsorbed TOC fractions in the tank and in any assumed photoreactor:
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Mass balance of hydroxyl radicals in the tank and in any assumed photoreactor:
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Mass balance of hydrogen peroxide in the tank and in any assumed photoreactor
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Nomenclature

CO3d Outlet dissolved ozone concentration, mol L-1

CO3d inlet Inlet dissolved ozone concentration, mol L-1

CO3g Outlet gas ozone concentration, mol L-1

CO3g inlet Inlet gas ozone concentration, mol L-1

Ci Concentration of species i, mol L-1

Ci
inlet Inlet concentration of species i, mol L-1

He Henry constant, atm M-1

Io Volumetirc radiation intensity, Einstein s-1 L-1

kDi Direct ozonation rate constant of species i, M-1 s-1

keqi Direct adsorption of TOCi onto TiO2, M-1 s-1

keq_i Desorption of TOCi from TiO2,  s-1

kFTOCi Direct photolysis of TOCi, s-1

kH HO2 radical rate constant of ozone, M-1 s-1

kHOH HO radical rate constant of hydrogen peroxide, M-1 s-1

kHetero First order rate constant of adsorbed TOC, s-1

kini HO- anion rate constant of ozone, M-1 s-1

kini2 First order rate constant of ozone photolysis, s-1



kla Volumetric mass transfer coefficient, s-1

kRi  HO radical rate constant of species i, M-1 s-1

kRO3 HO radical rate constant of ozone, M-1 s-1

L Radiation path length, cm

QL Liquid flow rate, L s-1

Qg Gas flow rate, L s-1

R Universal gas constant, atm L mol-1 K-1

r TOC reduction factor, dimensionless

T Temperature, K

VF ¼ of Volume of photolytic reactor, L

VT Volume of tank reactor, L

ZH2O2 stoichiometric factor of H2O2 generation, dimensionless

Greek letters

 Parameter in equation 24, g L-1 s-1

 Gas hold up, dimensionless

 Parameter in equation 24, g L-1

i Molar extinction coefficient of species i, M cm-1

i Quantum yield of species I, mol Einstein-1


